弯曲
弹簧(装置)
材料科学
执行机构
压缩(物理)
结构工程
复合材料
工程类
机械工程
机械
物理
电气工程
作者
Qibing Pei,Marcus Rosenthal,Scott Stanford,Harsha Prahlad,Ron Pelrine
标识
DOI:10.1088/0964-1726/13/5/n03
摘要
Electroelastomers (electroactive elastomers) such as the 3M VHB 4910 acrylic adhesive films have exhibited up to 380% strain in area expansion at 5–6 kV when they are highly prestrained. By rolling highly prestrained electroelastomer films around a compression spring, we have demonstrated multifunctional electroelastomer rolls (MERs, or spring rolls) that combine load bearing, actuation, and sensing functions. We extended the design to two-degree-of-freedom (2-DOF) and 3-DOF spring rolls by patterning the electrodes to align radially on two and four circumferential spans of the rolls, respectively. Multiple-DOF spring rolls retain the linear actuation of 1-DOF spring rolls with additional bending actuation. Mathematical equations are derived to correlate the bending angle and lateral force of the rolls with the actuated stroke in one of the electroded spans. Two-DOF spring rolls with a 1.4 cm outside diameter, 6.8 cm axial length, and 11 g weight have been fabricated; these rolls have a 90° maximum actuation bending angle, 0.7 N maximum lateral force, and up to 15 N blocked axial force. Three-DOF spring rolls with a 2.3 cm outside diameter, 9.0 cm axial length, and 29 g weight exhibit a 35° maximum bending angle and 1.0 N maximum lateral force. These specifications can be modified by variations in roll parameters according to the equations. Multi-DOF spring rolls are easy to fabricate, compact, multifunctional, and mechanically robust. They represent a radically new actuation technology and may enable a number of unique applications. We have demonstrated a small walking robot, MERbot, with one 2-DOF spring roll as each of its six legs. The robot's speed is as high as 13.6 cm s−1 or two-thirds of its length per second. 'Sushi rolls' have also been fabricated: these consist of six 2-DOF springs connected in series and monolithic in structure. The sushi rolls can be driven so as to generate wavelike or serpentine motion.
科研通智能强力驱动
Strongly Powered by AbleSci AI