Assessment of image fusion procedures using entropy, image quality, and multispectral classification

多光谱图像 图像融合 计算机科学 人工智能 小波 熵(时间箭头) 遥感 模式识别(心理学) 像素 传感器融合 主成分分析 融合 合成孔径雷达 图像(数学) 地理 物理 哲学 量子力学 语言学
作者
JW Roberts,Jan van Aardt,Fethi Ahmed
出处
期刊:Journal of Applied Remote Sensing [SPIE]
卷期号:2 (1): 023522-023522 被引量:633
标识
DOI:10.1117/1.2945910
摘要

The use of disparate data sources within a pixel level image fusion procedure has been well documented for pan-sharpening studies. The present paper explores various image fusion procedures for the fusion of multi-spectral ASTER data and a RadarSAT-1 SAR scene. The research sought to determine which fusion procedure merged the largest amount of SAR texture into the ASTER scenes, while also preserving the spectral content. An additional application based maximum likelihood classification assessment was also undertaken. Three SAR scenes were tested namely, one backscatter scene and two textural measures calculated using grey level co-occurrence matrices (GLCM). Each of these were fused to the ASTER data using the following established approaches; Brovey transformation, Intensity Hue and Saturation, Principal Component Substitution, Discrete wavelet transformation, and a modified discrete wavelet transformation using the IHS approach. Resulting data sets were assessed using qualitative and quantitative (entropy, universal image quality index, maximum likelihood classification) approaches. Results from the study indicated that while all post fusion data sets contained more information (entropy analysis), only the frequency-based fusion approaches managed to preserve the spectral quality of the original imagery. Furthermore results also indicated that the textural (mean, contrast) SAR scenes did not add any significant amount of information to the post-fusion imagery. Classification accuracy was not improved when comparing ASTER optical data and pseudo optical bands generated from the fusion analysis. Accuracies range from 68.4% for the ASTER data to well below 50% for the component substitution methods. Frequency based approaches also returned lower accuracies when compared to the unfused optical data. The present study essentially replicated (pan-sharpening) studies using the high resolution SAR scene as a pseudo panchromatic band.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
从容不乐完成签到,获得积分10
刚刚
1秒前
LYF发布了新的文献求助10
1秒前
乐观黑米完成签到,获得积分20
1秒前
坚定的羽毛完成签到 ,获得积分10
1秒前
谨慎的沉鱼完成签到,获得积分10
2秒前
发酒疯很方便吃完成签到,获得积分10
2秒前
amwlsai完成签到,获得积分10
2秒前
韦老虎完成签到,获得积分20
3秒前
糜佳诚完成签到 ,获得积分10
3秒前
lily完成签到,获得积分10
3秒前
神圣先知完成签到,获得积分10
3秒前
Hanni完成签到 ,获得积分10
3秒前
都可以完成签到,获得积分10
3秒前
努力的科研小白完成签到 ,获得积分10
4秒前
lx完成签到,获得积分10
4秒前
大白菜完成签到,获得积分10
4秒前
大大完成签到,获得积分10
4秒前
科研渣渣完成签到,获得积分10
5秒前
海洋完成签到,获得积分10
5秒前
希音发布了新的文献求助10
5秒前
认真科研完成签到,获得积分10
6秒前
7秒前
拙青完成签到,获得积分10
7秒前
摸鱼人完成签到,获得积分10
7秒前
窝窝头发布了新的文献求助10
8秒前
遗忘完成签到,获得积分10
8秒前
9秒前
鲤鱼青雪完成签到,获得积分10
9秒前
MattZheng完成签到,获得积分10
10秒前
浑映之完成签到 ,获得积分10
10秒前
相南相北完成签到 ,获得积分10
11秒前
毛毛完成签到,获得积分10
11秒前
无奈凡波完成签到,获得积分10
11秒前
xinL应助Ridley采纳,获得10
11秒前
11秒前
老何发布了新的文献求助20
11秒前
poegtam完成签到,获得积分10
12秒前
Arueliano发布了新的文献求助10
12秒前
lilli完成签到,获得积分0
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
Optimisation de cristallisation en solution de deux composés organiques en vue de leur purification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5079983
求助须知:如何正确求助?哪些是违规求助? 4298027
关于积分的说明 13389776
捐赠科研通 4121516
什么是DOI,文献DOI怎么找? 2257145
邀请新用户注册赠送积分活动 1261455
关于科研通互助平台的介绍 1195563