Effect of the atomic size distribution on glass forming ability of amorphous metallic alloys

结晶 金属 玻璃化转变 过冷
作者
O.N. Senkov,D.B. Miracle
出处
期刊:Materials Research Bulletin [Elsevier BV]
卷期号:36 (12): 2183-2198 被引量:468
标识
DOI:10.1016/s0025-5408(01)00715-2
摘要

A topological approach based on analysis of atomic size distributions has been developed and applied to multicomponent amorphous alloys with different glass-forming ability. The atomic size distributions were obtained by plotting atomic concentrations versus atomic radii of constitutive elements. Ordinary amorphous alloys with high critical cooling rates were found to have single-peak distributions with a concave downward shape. These amorphous systems have at least one alloying element with a smaller radius, and at least one alloying element with a larger radius relative to the base element. The concentration of an alloying element decreases rapidly as the difference in the atomic sizes of the base element and the alloying element increases. Atomic size distributions of Zr, Pd, or Ln-based bulk amorphous alloys, which have a critical cooling rate in the range of 1–100 K/s, have a completely different, concave upward shape with a minimum at an intermediate atomic size. The base alloying element in these alloys has the largest atomic size and the smallest atom often has the next-highest concentration. A model that explains the concave upward shape of atomic size distributions for the bulk amorphous alloys is suggested. This model takes into account that all alloying elements in bulk glass formers are smaller than the matrix element, and some of them are located in interstitial sites while others substitute for matrix atoms in a reference crystalline solid solution. The interstitial and substitutional atoms attract each other and produce short-range ordered atomic configurations that stabilize the amorphous state. According to this model, the critical concentration of an interstitial element required to amorphize the alloy increases with increasing size difference from the matrix atom.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1111应助CQC采纳,获得10
刚刚
yolo完成签到,获得积分10
1秒前
7秒前
7秒前
7秒前
谨慎的草丛完成签到,获得积分10
7秒前
8秒前
Jiang完成签到,获得积分10
9秒前
9秒前
asdf完成签到,获得积分10
9秒前
9秒前
张子捷发布了新的文献求助10
10秒前
10秒前
xiaooooou完成签到 ,获得积分10
11秒前
NexusExplorer应助Atopos采纳,获得10
11秒前
11秒前
荷西发布了新的文献求助10
11秒前
11秒前
12秒前
YDT0716发布了新的文献求助10
13秒前
春风十里发布了新的文献求助10
13秒前
13秒前
213132121完成签到,获得积分20
14秒前
Lucifer发布了新的文献求助10
14秒前
小凤发布了新的文献求助10
15秒前
阳光的皮皮虾完成签到,获得积分10
15秒前
荷西完成签到,获得积分10
16秒前
春风十里完成签到,获得积分10
17秒前
泡芙1207发布了新的文献求助10
17秒前
20秒前
20秒前
21秒前
Lucifer完成签到,获得积分10
23秒前
23秒前
Dizzy发布了新的文献求助10
24秒前
万能图书馆应助王悦静采纳,获得10
25秒前
量子星尘发布了新的文献求助10
25秒前
26秒前
2568269431完成签到 ,获得积分10
27秒前
27秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Plutonium Handbook 4000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Functional High Entropy Alloys and Compounds 1000
Building Quantum Computers 1000
Molecular Cloning: A Laboratory Manual (Fourth Edition) 500
Social Epistemology: The Niches for Knowledge and Ignorance 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4231837
求助须知:如何正确求助?哪些是违规求助? 3765105
关于积分的说明 11830613
捐赠科研通 3424081
什么是DOI,文献DOI怎么找? 1879039
邀请新用户注册赠送积分活动 931933
科研通“疑难数据库(出版商)”最低求助积分说明 839431