数学
不变(物理)
规范(哲学)
不平等
矩阵范数
正定矩阵
组合数学
纯数学
复矩阵
域代数上的
离散数学
数学分析
特征向量
数学物理
物理
化学
量子力学
色谱法
法学
政治学
标识
DOI:10.1137/s0895479898323823
摘要
Let A,B,X be complex matrices with A,B positive semidefinite. It is proved that (2+t)||Ar XB2-r+A2-rXBr ||\le 2||A2X +tAXB+XB2 || for any unitarily invariant norm $||\cdot||$ and real numbers r,t satisfying $1\le 2r\le 3,$ $-2 < t\le 2.$ The case r=1, t=0$ of this result is the well-known arithmetic-geometric mean inequality due to R. Bhatia and C. Davis [SIAM J. Matrix Anal. Appl., 14 (1993), pp. 132--136]. Several other unitarily invariant norm inequalities are derived.
科研通智能强力驱动
Strongly Powered by AbleSci AI