Improving electrochemical energy storage is one of the major issues of our time. The search for new battery materials together with the drive to improve performance and lower cost of existing and new batteries is not without its challenges. Success in these matters is undoubtedly based on first understanding the underlying chemistries of the materials and the relations between the components involved. A combined application of experimental and theoretical techniques has proven to be a powerful strategy to gain insights into many of the questions that arise from the “how do batteries work and why do they fail” challenge. In this Review, we highlight the application of solid-state nuclear magnetic resonance (NMR) spectroscopy in battery research: a technique that can be extremely powerful in characterizing local structures in battery materials, even in highly disordered systems. An introduction on electrochemical energy storage illustrates the research aims and prospective approaches to reach these. We part...