Deep Feature Extraction and Classification of Hyperspectral Images Based on Convolutional Neural Networks

高光谱成像 卷积神经网络 特征提取 人工智能 计算机科学 模式识别(心理学) 上下文图像分类 遥感 特征(语言学) 图像(数学) 地质学 语言学 哲学
作者
Yushi Chen,Hanlu Jiang,Chunyang Li,Xiuping Jia,Pedram Ghamisi
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:54 (10): 6232-6251 被引量:2400
标识
DOI:10.1109/tgrs.2016.2584107
摘要

Due to the advantages of deep learning, in this paper, a regularized deep feature extraction (FE) method is presented for hyperspectral image (HSI) classification using a convolutional neural network (CNN). The proposed approach employs several convolutional and pooling layers to extract deep features from HSIs, which are nonlinear, discriminant, and invariant. These features are useful for image classification and target detection. Furthermore, in order to address the common issue of imbalance between high dimensionality and limited availability of training samples for the classification of HSI, a few strategies such as L2 regularization and dropout are investigated to avoid overfitting in class data modeling. More importantly, we propose a 3-D CNN-based FE model with combined regularization to extract effective spectral-spatial features of hyperspectral imagery. Finally, in order to further improve the performance, a virtual sample enhanced method is proposed. The proposed approaches are carried out on three widely used hyperspectral data sets: Indian Pines, University of Pavia, and Kennedy Space Center. The obtained results reveal that the proposed models with sparse constraints provide competitive results to state-of-the-art methods. In addition, the proposed deep FE opens a new window for further research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爆米花应助刘123采纳,获得10
1秒前
LL完成签到 ,获得积分10
2秒前
3秒前
一夜之秋完成签到,获得积分10
3秒前
11秒前
chessman完成签到,获得积分10
15秒前
刘123发布了新的文献求助10
15秒前
安静的诗翠完成签到,获得积分10
22秒前
23秒前
科研通AI5应助单纯的雅香采纳,获得10
26秒前
SciGPT应助qianyuan采纳,获得10
27秒前
chiweiyoung完成签到,获得积分10
28秒前
29秒前
美满的稚晴完成签到 ,获得积分10
32秒前
33秒前
瘦瘦的迎南完成签到 ,获得积分10
34秒前
zhang完成签到,获得积分10
38秒前
38秒前
tdtk发布了新的文献求助10
39秒前
39秒前
梦幻两点半完成签到,获得积分20
40秒前
42秒前
43秒前
qianyuan发布了新的文献求助10
43秒前
tsing发布了新的文献求助30
47秒前
48秒前
49秒前
50秒前
小金骑士发布了新的文献求助10
53秒前
54秒前
酷炫依白发布了新的文献求助10
54秒前
LZM完成签到,获得积分10
54秒前
57秒前
Joaquin完成签到 ,获得积分10
58秒前
liang发布了新的文献求助10
59秒前
bing完成签到,获得积分10
59秒前
酷炫依白完成签到,获得积分10
59秒前
聪明的破茧完成签到,获得积分10
1分钟前
1分钟前
KinKrit完成签到,获得积分10
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778011
求助须知:如何正确求助?哪些是违规求助? 3323664
关于积分的说明 10215332
捐赠科研通 3038846
什么是DOI,文献DOI怎么找? 1667661
邀请新用户注册赠送积分活动 798341
科研通“疑难数据库(出版商)”最低求助积分说明 758339