Finite Element Model of Oxygen Transport for the Design of Geometrically Complex Microfluidic Devices Used in Biological Studies

微流控 氧气输送 氧气 极限氧浓度 纳米技术 软光刻 材料科学 生物物理学 化学 制作 医学 生物 病理 有机化学 替代医学
作者
Richard J. Sové,Graham Fraser,Daniel Goldman,Christopher G. Ellis
出处
期刊:PLOS ONE [Public Library of Science]
卷期号:11 (11): e0166289-e0166289 被引量:8
标识
DOI:10.1371/journal.pone.0166289
摘要

Red blood cells play a crucial role in the local regulation of oxygen supply in the microcirculation through the oxygen dependent release of ATP. Since red blood cells serve as an oxygen sensor for the circulatory system, the dynamics of ATP release determine the effectiveness of red blood cells to relate the oxygen levels to the vessels. Previous work has focused on the feasibility of developing a microfluidic system to measure the dynamics of ATP release. The objective was to determine if a steep oxygen gradient could be developed in the channel to cause a rapid decrease in hemoglobin oxygen saturation in order to measure the corresponding levels of ATP released from the red blood cells. In the present study, oxygen transport simulations were used to optimize the geometric design parameters for a similar system which is easier to fabricate. The system is composed of a microfluidic device stacked on top of a large, gas impermeable flow channel with a hole to allow gas exchange. The microfluidic device is fabricated using soft lithography in polydimethyl-siloxane, an oxygen permeable material. Our objective is twofold: (1) optimize the parameters of our system and (2) develop a method to assess the oxygen distribution in complex 3D microfluidic device geometries. 3D simulations of oxygen transport were performed to simulate oxygen distribution throughout the device. The simulations demonstrate that microfluidic device geometry plays a critical role in molecule exchange, for instance, changing the orientation of the short wide microfluidic channel results in a 97.17% increase in oxygen exchange. Since microfluidic devices have become a more prominent tool in biological studies, understanding the transport of oxygen and other biological molecules in microfluidic devices is critical for maintaining a physiologically relevant environment. We have also demonstrated a method to assess oxygen levels in geometrically complex microfluidic devices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
宴之敖者完成签到,获得积分10
1秒前
rock发布了新的文献求助10
2秒前
GGbond发布了新的文献求助10
2秒前
这条小鱼也在乎完成签到,获得积分20
2秒前
CipherSage应助靓丽的咖啡豆采纳,获得10
2秒前
希望天下0贩的0应助高琦采纳,获得10
3秒前
3秒前
LVVVB完成签到,获得积分10
4秒前
4秒前
明芬发布了新的文献求助10
5秒前
selena完成签到,获得积分10
5秒前
meihui完成签到 ,获得积分10
5秒前
年轻的元菱完成签到,获得积分10
6秒前
7秒前
没有神的过往完成签到,获得积分10
7秒前
明时完成签到,获得积分10
7秒前
8秒前
不知完成签到 ,获得积分10
8秒前
乐观小之应助HmH采纳,获得10
10秒前
科研通AI2S应助Cheryy采纳,获得10
10秒前
syou_tiger发布了新的文献求助10
10秒前
11秒前
NiNi完成签到,获得积分10
12秒前
yana发布了新的文献求助10
14秒前
14秒前
14秒前
LHW发布了新的文献求助10
15秒前
噗噗完成签到,获得积分20
15秒前
在水一方应助樱铃采纳,获得10
16秒前
zzy完成签到,获得积分10
17秒前
18秒前
19秒前
搜集达人应助飘逸牛青采纳,获得10
19秒前
AR完成签到,获得积分10
19秒前
于可欣完成签到 ,获得积分10
20秒前
yyj发布了新的文献求助10
21秒前
22秒前
yang发布了新的文献求助30
22秒前
墨墨完成签到,获得积分10
23秒前
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
On the Angular Distribution in Nuclear Reactions and Coincidence Measurements 1000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5309422
求助须知:如何正确求助?哪些是违规求助? 4454036
关于积分的说明 13859167
捐赠科研通 4341911
什么是DOI,文献DOI怎么找? 2384254
邀请新用户注册赠送积分活动 1378776
关于科研通互助平台的介绍 1346804