拉普拉斯变换
行波
变量(数学)
常量(计算机编程)
数学
组合数学
人口
流行病模型
简单(哲学)
数学分析
应用数学
计算机科学
人口学
哲学
程序设计语言
社会学
认识论
出处
期刊:Discrete and Continuous Dynamical Systems-series B
[American Institute of Mathematical Sciences]
日期:2016-11-01
卷期号:21 (10): 3723-3742
被引量:16
标识
DOI:10.3934/dcdsb.2016118
摘要
In the present paper, we propose a simple diffusive SEIR epidemic modelwhere the total population is variable. We first give the explicit formula of thebasic reproduction number $\mathcal{R}_0$ for the model. And hence, we show that if$\mathcal{R}_0>1$, then there exists a constant $c^*>0$ such that for any $c>c^*$, themodel admits a nontrivial traveling wave solution, and if $\mathcal{R}_00$(or, $\mathcal{R}_0>1$ and $c\in(0,c^*)$), then the model has no nontrivial travelingwave solution. Consequently, we obtain the full information about the existence andnon-existence of traveling wave solutions of the model by determined by the constants$\mathcal{R}_0$ and $c^*$. The proof of the main results is mainly based on Schauderfixed point theorem and Laplace transform.
科研通智能强力驱动
Strongly Powered by AbleSci AI