Deep learning-based automatic tumor burden assessment of pediatric high-grade gliomas, medulloblastomas, and other leptomeningeal seeding tumors

医学 磁共振成像 流体衰减反转恢复 放射科 组内相关 分割 室管膜瘤 核医学 神经外科 人工智能 计算机科学 临床心理学 心理测量学
作者
Jian Peng,Daniel D Kim,Jay Patel,Xiaowei Zeng,Jiaer Huang,Ken Chang,Xinping Xun,Chen Zhang,John Sollee,Jing Wu,Deepa Dalal,Xue Feng,Hao Zhou,Chengzhang Zhu,Beiji Zou,Ke Jin,Patrick Y. Wen,Jerrold L. Boxerman,Katherine E. Warren,Tina Young Poussaint
出处
期刊:Neuro-oncology [Oxford University Press]
卷期号:24 (2): 289-299 被引量:46
标识
DOI:10.1093/neuonc/noab151
摘要

Longitudinal measurement of tumor burden with magnetic resonance imaging (MRI) is an essential component of response assessment in pediatric brain tumors. We developed a fully automated pipeline for the segmentation of tumors in pediatric high-grade gliomas, medulloblastomas, and leptomeningeal seeding tumors. We further developed an algorithm for automatic 2D and volumetric size measurement of tumors. The preoperative and postoperative cohorts were randomly split into training and testing sets in a 4:1 ratio. A 3D U-Net neural network was trained to automatically segment the tumor on T1 contrast-enhanced and T2/FLAIR images. The product of the maximum bidimensional diameters according to the RAPNO (Response Assessment in Pediatric Neuro-Oncology) criteria (AutoRAPNO) was determined. Performance was compared to that of 2 expert human raters who performed assessments independently. Volumetric measurements of predicted and expert segmentations were computationally derived and compared. A total of 794 preoperative MRIs from 794 patients and 1003 postoperative MRIs from 122 patients were included. There was excellent agreement of volumes between preoperative and postoperative predicted and manual segmentations, with intraclass correlation coefficients (ICCs) of 0.912 and 0.960 for the 2 preoperative and 0.947 and 0.896 for the 2 postoperative models. There was high agreement between AutoRAPNO scores on predicted segmentations and manually calculated scores based on manual segmentations (Rater 2 ICC = 0.909; Rater 3 ICC = 0.851). Lastly, the performance of AutoRAPNO was superior in repeatability to that of human raters for MRIs with multiple lesions. Our automated deep learning pipeline demonstrates potential utility for response assessment in pediatric brain tumors. The tool should be further validated in prospective studies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
谨慎妙菡完成签到,获得积分10
1秒前
1秒前
鑫酱完成签到,获得积分10
1秒前
炙热成危发布了新的文献求助10
2秒前
2秒前
凭栏听雨发布了新的文献求助10
2秒前
柠檬酸循环完成签到,获得积分10
3秒前
xcc发布了新的文献求助10
3秒前
4秒前
4秒前
水沝完成签到 ,获得积分10
5秒前
CodeCraft应助zxh采纳,获得10
5秒前
123jopop完成签到,获得积分10
6秒前
kidult发布了新的文献求助30
6秒前
6秒前
清欢发布了新的文献求助10
6秒前
苹果纲完成签到,获得积分10
6秒前
南枝完成签到,获得积分10
7秒前
fun发布了新的文献求助10
7秒前
科研通AI5应助勤恳含烟采纳,获得10
7秒前
tcx完成签到 ,获得积分10
7秒前
Kayla发布了新的文献求助20
8秒前
8秒前
大道无形我有型完成签到,获得积分10
8秒前
FashionBoy应助巴巴塔采纳,获得10
9秒前
10秒前
Jasper应助HUGGSY采纳,获得10
10秒前
小李完成签到,获得积分10
11秒前
情怀应助131采纳,获得50
12秒前
甜甜玫瑰应助90采纳,获得10
12秒前
尹尹尹发布了新的文献求助10
12秒前
科研通AI5应助自然水风采纳,获得30
12秒前
我是老大应助迷路小丸子采纳,获得10
13秒前
自由山槐发布了新的文献求助30
14秒前
二十六画生完成签到,获得积分10
14秒前
爆米花应助猪猪hero采纳,获得10
15秒前
露露关注了科研通微信公众号
16秒前
张雯悦完成签到 ,获得积分20
17秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Understanding Interaction in the Second Language Classroom Context 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3809722
求助须知:如何正确求助?哪些是违规求助? 3354237
关于积分的说明 10369760
捐赠科研通 3070510
什么是DOI,文献DOI怎么找? 1686393
邀请新用户注册赠送积分活动 810922
科研通“疑难数据库(出版商)”最低求助积分说明 766433