Multimodal regularized linear models with flux balance analysis for mechanistic integration of omics data

计算机科学 数据集成 正规化(语言学) 通量平衡分析 上传 数据挖掘 数据类型 机器学习 人工智能 生物信息学 生物 操作系统 程序设计语言
作者
Giuseppe Magazzù,Guido Zampieri,Claudio Angione
标识
DOI:10.1093/bioinformatics/btab324
摘要

Abstract Motivation High-throughput biological data, thanks to technological advances, have become cheaper to collect, leading to the availability of vast amounts of omic data of different types. In parallel, the in silico reconstruction and modeling of metabolic systems is now acknowledged as a key tool to complement experimental data on a large scale. The integration of these model- and data-driven information is therefore emerging as a new challenge in systems biology, with no clear guidance on how to better take advantage of the inherent multisource and multiomic nature of these data types while preserving mechanistic interpretation. Results Here, we investigate different regularization techniques for high-dimensional data derived from the integration of gene expression profiles with metabolic flux data, extracted from strain-specific metabolic models, to improve cellular growth rate predictions. To this end, we propose ad-hoc extensions of previous regularization frameworks including group, view-specific and principal component regularization and experimentally compare them using data from 1143 Saccharomyces cerevisiae strains. We observe a divergence between methods in terms of regression accuracy and integration effectiveness based on the type of regularization employed. In multiomic regression tasks, when learning from experimental and model-generated omic data, our results demonstrate the competitiveness and ease of interpretation of multimodal regularized linear models compared to data-hungry methods based on neural networks. Availability and implementation All data, models and code produced in this work are available on GitHub at https://github.com/Angione-Lab/HybridGroupIPFLasso_pc2Lasso. Supplementary information Supplementary data are available at Bioinformatics online.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
丘比特应助Michaelfall采纳,获得10
1秒前
zhangxinask发布了新的文献求助20
2秒前
秋子发布了新的文献求助10
3秒前
星星发布了新的文献求助10
4秒前
7秒前
song完成签到,获得积分10
8秒前
桐桐应助WYN采纳,获得100
10秒前
11秒前
11秒前
strug783发布了新的文献求助10
12秒前
完美世界应助俞绯采纳,获得10
13秒前
13秒前
科研通AI5应助大象放冰箱采纳,获得30
14秒前
英姑应助科研通管家采纳,获得10
15秒前
打打应助科研通管家采纳,获得10
15秒前
慕青应助科研通管家采纳,获得10
15秒前
充电宝应助科研通管家采纳,获得10
15秒前
orixero应助科研通管家采纳,获得10
15秒前
15秒前
16秒前
16秒前
16秒前
科研通AI5应助秋子采纳,获得10
16秒前
liangchenglvliao完成签到 ,获得积分10
17秒前
18秒前
Gypsy发布了新的文献求助10
18秒前
复杂静竹发布了新的文献求助10
18秒前
zhangxinask完成签到,获得积分10
19秒前
19秒前
科研通AI5应助大象放冰箱采纳,获得10
21秒前
orixero应助Kun采纳,获得10
22秒前
英俊的铭应助Kun采纳,获得10
22秒前
齐嘉懿发布了新的文献求助10
23秒前
贱小贱发布了新的文献求助10
23秒前
ilaveu完成签到,获得积分10
27秒前
情怀应助CYY采纳,获得10
29秒前
科研通AI5应助大象放冰箱采纳,获得30
30秒前
30秒前
研友_happy完成签到,获得积分10
31秒前
ycd完成签到,获得积分10
31秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Encyclopedia of Geology (2nd Edition) 2000
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780310
求助须知:如何正确求助?哪些是违规求助? 3325580
关于积分的说明 10223667
捐赠科研通 3040766
什么是DOI,文献DOI怎么找? 1668988
邀请新用户注册赠送积分活动 798962
科研通“疑难数据库(出版商)”最低求助积分说明 758648