Machine Learning‐Based Multiparametric Magnetic Resonance Imaging Radiomic Model for Discrimination of Pathological Subtypes of Craniopharyngioma

医学 磁共振成像 颅咽管瘤 放射科 病态的 核磁共振 病理 计算机科学 物理
作者
Zhou‐San Huang,Xiang Xiao,Xiaodan Li,Hai‐Zhu Mo,Wenle He,Yao‐Hong Deng,Li‐Jun Lu,Yuan‐Kui Wu,Hao Liu
出处
期刊:Journal of Magnetic Resonance Imaging [Wiley]
卷期号:54 (5): 1541-1550 被引量:27
标识
DOI:10.1002/jmri.27761
摘要

Background Preoperative, noninvasive discrimination of the craniopharyngioma subtypes is important because it influences the treatment strategy. Purpose To develop a radiomic model based on multiparametric magnetic resonance imaging for noninvasive discrimination of pathological subtypes of craniopharyngioma. Study Type Retrospective. Population A total of 164 patients from two medical centers were enrolled in this study. Patients from the first medical center were divided into a training cohort ( N = 99) and an internal validation cohort ( N = 33). Patients from the second medical center were used as the external independent validation cohort ( N = 32). Field Strength/Sequence Axial T 1 ‐weighted (T 1 ‐w), T 2 ‐weighted (T 2 ‐w), contrast‐enhanced T 1 ‐weighted (CET 1 ‐w) on 3.0 T or 1.5 T magnetic resonance scanners. Assessment Pathological subtypes (squamous papillary craniopharyngioma and adamantinomatous craniopharyngioma) were confirmed by surgery and hematoxylin and eosin staining. Optimal radiomic feature selection was performed by SelectKBest, the least absolute shrinkage and selection operator algorithm, and support vector machine (SVM) with a recursive feature elimination algorithm. Models based on each sequence or combinations of sequences were built using a SVM classifier and used to differentiate pathological subtypes of craniopharyngioma in the training cohort, internal validation, and external validation cohorts. Statistical Tests The area under the receiver operating characteristic curve (AUC) was used to assess the diagnostic performance of the radiomic models. Results Seven texture features, three from T 1 ‐w, two from T 2 ‐w, and two from CET 1 ‐w, were selected and used to construct the radiomic model. The AUC values of the radiomic model were 0.899, 0.810, and 0.920 in the training cohort, internal and external validation cohorts, respectively. The AUC values of the clinicoradiological model were 0.677, 0.655, and 0.671 in the training cohort, internal and external validation cohorts, respectively. Data Conclusion The model based on radiomic features from T 1 ‐w, T 2 ‐w, and CET 1 ‐w has a high discriminatory ability for pathological subtypes of craniopharyngioma. Level of Evidence 4 Technical Efficacy 2
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
乆乆乆乆发布了新的文献求助10
刚刚
Seisyuuu完成签到,获得积分20
刚刚
1秒前
酷波er应助哈哈哈哈哈采纳,获得10
1秒前
BINGBING1230发布了新的文献求助10
1秒前
刘显波完成签到,获得积分10
2秒前
ljy发布了新的文献求助10
3秒前
Pendulium发布了新的文献求助10
4秒前
4秒前
倚楼听风雨完成签到 ,获得积分10
5秒前
yyds发布了新的文献求助10
7秒前
7秒前
科目三应助蟹蟹采纳,获得10
9秒前
析木完成签到,获得积分10
9秒前
ljy完成签到,获得积分10
11秒前
12秒前
空山新雨发布了新的文献求助10
13秒前
13秒前
14秒前
7788完成签到,获得积分10
14秒前
孙一涵发布了新的文献求助10
14秒前
大个应助yyds采纳,获得10
15秒前
顺顺利利发布了新的文献求助50
15秒前
在水一方应助Seisyuuu采纳,获得10
15秒前
rong发布了新的文献求助10
18秒前
Yy发布了新的文献求助10
19秒前
20秒前
20秒前
隐形的元珊完成签到,获得积分10
20秒前
22秒前
czephyr完成签到,获得积分10
22秒前
22秒前
24秒前
风萧零落发布了新的文献求助10
26秒前
SYH完成签到,获得积分10
26秒前
26秒前
量子星尘发布了新的文献求助10
26秒前
科研通AI6应助123456采纳,获得10
27秒前
27秒前
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
Sport, Social Media, and Digital Technology: Sociological Approaches 650
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5593859
求助须知:如何正确求助?哪些是违规求助? 4679724
关于积分的说明 14811189
捐赠科研通 4645218
什么是DOI,文献DOI怎么找? 2534702
邀请新用户注册赠送积分活动 1502747
关于科研通互助平台的介绍 1469430