Genome sequencing data analysis for rare disease gene discovery

优先次序 工作流程 基因组 计算生物学 生物 数据科学 人口 疾病 注释 基因组学 精密医学 基因 遗传学 计算机科学 医学 人工智能 管理科学 经济 病理 环境卫生 数据库
作者
Umm-Kulthum Ismail Umlai,Dhinoth Kumar Bangarusamy,Xavier Estivill,Puthen V. Jithesh
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:23 (1) 被引量:6
标识
DOI:10.1093/bib/bbab363
摘要

Rare diseases occur in a smaller proportion of the general population, which is variedly defined as less than 200 000 individuals (US) or in less than 1 in 2000 individuals (Europe). Although rare, they collectively make up to approximately 7000 different disorders, with majority having a genetic origin, and affect roughly 300 million people globally. Most of the patients and their families undergo a long and frustrating diagnostic odyssey. However, advances in the field of genomics have started to facilitate the process of diagnosis, though it is hindered by the difficulty in genome data analysis and interpretation. A major impediment in diagnosis is in the understanding of the diverse approaches, tools and datasets available for variant prioritization, the most important step in the analysis of millions of variants to select a few potential variants. Here we present a review of the latest methodological developments and spectrum of tools available for rare disease genetic variant discovery and recommend appropriate data interpretation methods for variant prioritization. We have categorized the resources based on various steps of the variant interpretation workflow, starting from data processing, variant calling, annotation, filtration and finally prioritization, with a special emphasis on the last two steps. The methods discussed here pertain to elucidating the genetic basis of disease in individual patient cases via trio- or family-based analysis of the genome data. We advocate the use of a combination of tools and datasets and to follow multiple iterative approaches to elucidate the potential causative variant.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
七七完成签到,获得积分10
1秒前
ceci完成签到,获得积分10
1秒前
星辰大海应助欣喜的以丹采纳,获得10
1秒前
王浩发布了新的文献求助10
2秒前
NJ完成签到,获得积分10
3秒前
loyal完成签到,获得积分10
3秒前
4秒前
CodeCraft应助RHJ采纳,获得10
4秒前
小马甲应助诗轩采纳,获得10
4秒前
wumandong发布了新的文献求助10
4秒前
皮儿关注了科研通微信公众号
5秒前
害羞雨南发布了新的文献求助10
6秒前
燕子非发布了新的文献求助10
8秒前
无情干饭崽完成签到,获得积分10
9秒前
卡卡咧咧发布了新的文献求助10
10秒前
10秒前
123发布了新的文献求助10
10秒前
10秒前
汉堡包应助wumandong采纳,获得10
11秒前
11秒前
故酒应助haki采纳,获得10
12秒前
科研通AI5应助haki采纳,获得10
12秒前
HEAUBOOK应助水论文行者采纳,获得10
12秒前
12秒前
慕青应助人不犯二枉少年采纳,获得10
13秒前
Atobe完成签到,获得积分10
13秒前
彭于晏应助zy采纳,获得10
14秒前
融化的汪完成签到,获得积分10
14秒前
诗轩发布了新的文献求助10
15秒前
nn完成签到 ,获得积分10
15秒前
16秒前
yaya小气猫发布了新的文献求助30
16秒前
涨涨涨张发布了新的文献求助10
16秒前
粽子发布了新的文献求助10
17秒前
18秒前
SciGPT应助yyc采纳,获得10
19秒前
loyal发布了新的文献求助10
20秒前
cherish发布了新的文献求助10
20秒前
20秒前
璐璐发布了新的文献求助10
21秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
材料概论 周达飞 ppt 500
Nonrandom distribution of the endogenous retroviral regulatory elements HERV-K LTR on human chromosome 22 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3807134
求助须知:如何正确求助?哪些是违规求助? 3351915
关于积分的说明 10356503
捐赠科研通 3067918
什么是DOI,文献DOI怎么找? 1684783
邀请新用户注册赠送积分活动 809910
科研通“疑难数据库(出版商)”最低求助积分说明 765787