壳聚糖
化学
氨基酸
药物输送
自愈水凝胶
赖氨酸
谷氨酸
氢键
高分子化学
核化学
有机化学
生物化学
分子
作者
Jianan Tong,Huiyun Zhou,Jingjing Zhou,Yawei Chen,Jing Shi,Jieke Zhang,Xinyu Liang,Tianyuan Du
标识
DOI:10.1007/s42995-021-00116-9
摘要
Chitosan/glycerophosphate thermosensitive hydrogel crosslinked physically was a potential drug delivery carrier; however, long gelation time limits its application. Here, chitosan-amino acid (AA) thermosensitive hydrogels were prepared from chitosan (CS), αβ-glycerophosphate (GP), and l-lysine (Lys) or l-glutamic acid (Glu). The prepared CS-Lys/GP and CS-Glu/GP hydrogel showed good thermosensitivity and could form gels in a short time. The optimal parameters of CS-Lys/GP hydrogel were that the concentration of CS-Lys was 2.5%, the ratio of CS/Lys was 3.5/1.0, the ratio of CS-Lys/GP was 4.5/1.0. The optimal parameters of CS-Glu/GP hydrogel were that the concentration of CS-Glu was 3.0%, the ratio of CS/Glu was 2.0/1.0, and the ratio of CS-Glu/GP was 4.0/1.5. Chitosan-amino acid (CS-AA) thermosensitive hydrogel had a three-dimensional network structure. The addition of model drug tinidazole (TNZ) had no obvious effect on the structure of hydrogel. The results of infrared spectroscopy showed that there were hydrogen bonds between amino acids and chitosan. In vitro release results showed that CS-Lys/GP and CS-Glu/GP thermosensitive hydrogels had sustained release effects. Thus, the chitosan-amino acid thermosensitive hydrogels hold great potential as a sustained release drug delivery system.
科研通智能强力驱动
Strongly Powered by AbleSci AI