Structured fabrics with tunable mechanical properties

联锁 材料科学 弯曲 干扰 复合材料 链条(单位) 模数 机械工程 工程类 物理 天文 热力学
作者
Yifan Wang,Liuchi Li,Douglas C. Hofmann,José E. Andrade,Chiara Daraio
出处
期刊:Nature [Springer Nature]
卷期号:596 (7871): 238-243 被引量:158
标识
DOI:10.1038/s41586-021-03698-7
摘要

Structured fabrics, such as woven sheets or chain mail armours, derive their properties both from the constitutive materials and their geometry1,2. Their design can target desirable characteristics, such as high impact resistance, thermal regulation, or electrical conductivity3–5. Once realized, however, the fabrics’ properties are usually fixed. Here we demonstrate structured fabrics with tunable bending modulus, consisting of three-dimensional particles arranged into layered chain mails. The chain mails conform to complex shapes2, but when pressure is exerted at their boundaries, the particles interlock and the chain mails jam. We show that, with small external pressure (about 93 kilopascals), the sheets become more than 25 times stiffer than in their relaxed configuration. This dramatic increase in bending resistance arises because the interlocking particles have high tensile resistance, unlike what is found for loose granular media. We use discrete-element simulations to relate the chain mail’s micro-structure to macroscale properties and to interpret experimental measurements. We find that chain mails, consisting of different non-convex granular particles, undergo a jamming phase transition that is described by a characteristic power-law function akin to the behaviour of conventional convex media. Our work provides routes towards lightweight, tunable and adaptive fabrics, with potential applications in wearable exoskeletons, haptic architectures and reconfigurable medical supports. A structured fabric constructed of linked hollow polyhedral particles (resembling chain mail) can be simply and reversibly tuned between flexible and rigid states; when it is compressed, its linked particles become jammed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
伏笑发布了新的文献求助10
1秒前
3秒前
汪汪完成签到,获得积分20
4秒前
6秒前
nicelily应助贪玩的雁凡采纳,获得100
8秒前
完美世界应助自然1111采纳,获得10
8秒前
小郭发布了新的文献求助10
9秒前
Ava应助晴天采纳,获得10
9秒前
个性的紫菜应助li采纳,获得10
12秒前
张泽崇应助珊珊来迟采纳,获得10
13秒前
Talk完成签到,获得积分10
13秒前
kk完成签到,获得积分10
17秒前
jxp完成签到,获得积分10
21秒前
柠檬精翠翠完成签到 ,获得积分10
25秒前
25秒前
小白完成签到,获得积分10
25秒前
26秒前
27秒前
29秒前
lxw完成签到,获得积分10
29秒前
30秒前
30秒前
30秒前
rundstedt发布了新的文献求助30
31秒前
31秒前
33秒前
33秒前
35秒前
Jene发布了新的文献求助10
35秒前
英俊的铭应助椰子糖采纳,获得10
35秒前
SOLOMON应助菜菜酱爱火锅采纳,获得10
36秒前
lili发布了新的文献求助10
37秒前
38秒前
39秒前
奋斗芒果发布了新的文献求助10
42秒前
王菲完成签到,获得积分10
42秒前
42秒前
bkagyin应助栗子采纳,获得10
42秒前
42秒前
42秒前
高分求助中
Thermodynamic data for steelmaking 3000
Manual of Clinical Microbiology, 4 Volume Set (ASM Books) 13th Edition 800
Counseling With Immigrants, Refugees, and Their Families From Social Justice Perspectives pages 800
Electrochemistry 500
Statistical Procedures for the Medical Device Industry 400
藍からはじまる蛍光性トリプタンスリン研究 400
Cardiology: Board and Certification Review 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 有机化学 工程类 生物化学 纳米技术 物理 内科学 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 电极 光电子学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 2367724
求助须知:如何正确求助?哪些是违规求助? 2076430
关于积分的说明 5195101
捐赠科研通 1803672
什么是DOI,文献DOI怎么找? 900551
版权声明 558039
科研通“疑难数据库(出版商)”最低求助积分说明 480624