Principal Component Pursuit for Pattern Identification in Environmental Mixtures

主成分分析 奇异值分解 先验与后验 模式识别(心理学) 降维 基质(化学分析) 统计 维数之咒 噪音(视频) 数学 人工智能 计算机科学 化学 色谱法 认识论 图像(数学) 哲学
作者
Elizabeth A. Gibson,Junhui Zhang,Jingkai Yan,Lawrence G. Chillrud,Jaime Benavides,Yanelli Nunez,Julie B. Herbstman,Jeff Goldsmith,John Wright,Marianthi-Anna Kioumourtzoglou
出处
期刊:Environmental Health Perspectives [National Institute of Environmental Health Sciences]
卷期号:130 (11)
标识
DOI:10.1289/ehp10479
摘要

Background: Environmental health researchers often aim to identify sources or behaviors that give rise to potentially harmful environmental exposures. Objective: We adapted principal component pursuit (PCP)—a robust and well-established technique for dimensionality reduction in computer vision and signal processing—to identify patterns in environmental mixtures. PCP decomposes the exposure mixture into a low-rank matrix containing consistent patterns of exposure across pollutants and a sparse matrix isolating unique or extreme exposure events. Methods: We adapted PCP to accommodate nonnegative data, missing data, and values below a given limit of detection (LOD). We simulated data to represent environmental mixtures of two sizes with increasing proportions <LOD and three noise structures. We applied PCP-LOD to evaluate its performance in comparison with principal component analysis (PCA). We next applied principal component pursuit with limit of detection (PCP-LOD) to an exposure mixture of 21 persistent organic pollutants (POPs) measured in 1,000 U.S. adults from the 2001–2002 National Health and Nutrition Examination Survey (NHANES). We applied singular value decomposition to the estimated low-rank matrix to characterize the patterns. Results: PCP-LOD recovered the true number of patterns through cross-validation for all simulations; based on an a priori specified criterion, PCA recovered the true number of patterns in 32% of simulations. PCP-LOD achieved lower relative predictive error than PCA for all simulated data sets with up to 50% of the data <LOD. When 75% of values were <LOD, PCP-LOD outperformed PCA only when noise was low. In the POP mixture, PCP-LOD identified a rank-three underlying structure and separated 6% of values as extreme events. One pattern represented comprehensive exposure to all POPs. The other patterns grouped chemicals based on known structure and toxicity. Discussion: PCP-LOD serves as a useful tool to express multidimensional exposures as consistent patterns that, if found to be related to adverse health, are amenable to targeted public health messaging. https://doi.org/10.1289/EHP10479
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
啊啊完成签到,获得积分10
刚刚
Smole完成签到,获得积分10
1秒前
1秒前
momo完成签到,获得积分10
1秒前
1秒前
酷波er应助12366666采纳,获得10
2秒前
王SQ完成签到 ,获得积分10
2秒前
feng完成签到 ,获得积分10
2秒前
moroa完成签到,获得积分10
3秒前
4秒前
流露完成签到,获得积分10
5秒前
Monica发布了新的文献求助10
5秒前
yang完成签到,获得积分10
5秒前
champtin完成签到 ,获得积分20
5秒前
纯真冰露完成签到,获得积分10
6秒前
SYLH应助成就小懒虫采纳,获得10
6秒前
7秒前
Yyy发布了新的文献求助10
7秒前
WANGs发布了新的文献求助10
8秒前
Chamsel完成签到,获得积分10
8秒前
Arml完成签到 ,获得积分10
8秒前
8秒前
Fa完成签到,获得积分10
8秒前
繁荣的忆文完成签到,获得积分10
8秒前
科研通AI5应助殇春秋采纳,获得10
8秒前
步行街车神ahua完成签到,获得积分10
9秒前
Sene完成签到,获得积分10
10秒前
10秒前
wanci应助Cynthia采纳,获得10
10秒前
guozizi完成签到,获得积分10
10秒前
吴学仕完成签到,获得积分10
11秒前
11秒前
11秒前
12秒前
科目三应助烨霖采纳,获得10
12秒前
豚豚完成签到,获得积分10
12秒前
yuuu完成签到 ,获得积分10
12秒前
12秒前
不安溪灵完成签到,获得积分10
12秒前
高分求助中
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
Pathology of Laboratory Rodents and Rabbits (5th Edition) 400
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3816166
求助须知:如何正确求助?哪些是违规求助? 3359723
关于积分的说明 10404224
捐赠科研通 3077544
什么是DOI,文献DOI怎么找? 1690330
邀请新用户注册赠送积分活动 813741
科研通“疑难数据库(出版商)”最低求助积分说明 767787