已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Convolutional neural network ensemble for Parkinson's disease detection from voice recordings

构音障碍 卷积神经网络 计算机科学 任务(项目管理) 语音识别 人工智能 人口 灵敏度(控制系统) 特征提取 模式识别(心理学) 机器学习 听力学 医学 工程类 管理 经济 环境卫生 电子工程
作者
Máté Hireš,Matej Gazda,Peter Drotár,Nemuel Daniel Pah,Mohammod Abdul Motin,Dinesh Kumar
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:141: 105021-105021 被引量:96
标识
DOI:10.1016/j.compbiomed.2021.105021
摘要

The computerized detection of Parkinson's disease (PD) will facilitate population screening and frequent monitoring and provide a more objective measure of symptoms, benefiting both patients and healthcare providers. Dysarthria is an early symptom of the disease and examining it for computerized diagnosis and monitoring has been proposed. Deep learning-based approaches have advantages for such applications because they do not require manual feature extraction, and while this approach has achieved excellent results in speech recognition, its utilization in the detection of pathological voices is limited. In this work, we present an ensemble of convolutional neural networks (CNNs) for the detection of PD from the voice recordings of 50 healthy people and 50 people with PD obtained from PC-GITA, a publicly available database. We propose a multiple-fine-tuning method to train the base CNN. This approach reduces the semantical gap between the source task that has been used for network pretraining and the target task by expanding the training process by including training on another dataset. Training and testing were performed for each vowel separately, and a 10-fold validation was performed to test the models. The performance was measured by using accuracy, sensitivity, specificity and area under the ROC curve (AUC). The results show that this approach was able to distinguish between the voices of people with PD and those of healthy people for all vowels. While there were small differences between the different vowels, the best performance was when/a/was considered; we achieved 99% accuracy, 86.2% sensitivity, 93.3% specificity and 89.6% AUC. This shows that the method has potential for use in clinical practice for the screening, diagnosis and monitoring of PD, with the advantage that vowel-based voice recordings can be performed online without requiring additional hardware.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
烟花应助jiiie采纳,获得10
2秒前
4秒前
丘比特应助科研通管家采纳,获得10
7秒前
愤怒的冰菱完成签到,获得积分10
10秒前
DT发布了新的文献求助10
10秒前
zzz完成签到,获得积分10
14秒前
17秒前
17秒前
18秒前
ChenWei发布了新的文献求助10
21秒前
Zyl完成签到 ,获得积分10
21秒前
ly发布了新的文献求助10
24秒前
25秒前
小蘑菇应助哆啦采纳,获得10
25秒前
深情安青应助DT采纳,获得10
27秒前
大个应助十九岁的时差采纳,获得10
27秒前
G1997完成签到 ,获得积分10
28秒前
popcorn发布了新的文献求助10
30秒前
万能图书馆应助ChenWei采纳,获得10
35秒前
Murphy完成签到 ,获得积分10
35秒前
36秒前
DT完成签到,获得积分10
36秒前
Huuu完成签到,获得积分10
37秒前
kevin完成签到 ,获得积分10
38秒前
42秒前
42秒前
Owen应助babulao采纳,获得10
43秒前
顺利毕业呀完成签到,获得积分10
43秒前
popcorn完成签到,获得积分10
45秒前
50秒前
52秒前
babulao发布了新的文献求助10
54秒前
Hung完成签到,获得积分10
54秒前
长生完成签到 ,获得积分10
55秒前
57秒前
沈惠映完成签到 ,获得积分10
59秒前
zzz完成签到 ,获得积分10
59秒前
1分钟前
1分钟前
babulao完成签到,获得积分10
1分钟前
高分求助中
【请各位用户详细阅读此贴后再求助】科研通的精品贴汇总(请勿应助) 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Global Eyelash Assessment scale (GEA) 1000
Maritime Applications of Prolonged Casualty Care: Drowning and Hypothermia on an Amphibious Warship 500
Comparison analysis of Apple face ID in iPad Pro 13” with first use of metasurfaces for diffraction vs. iPhone 16 Pro 500
Towards a $2B optical metasurfaces opportunity by 2029: a cornerstone for augmented reality, an incremental innovation for imaging (YINTR24441) 500
Materials for Green Hydrogen Production 2026-2036: Technologies, Players, Forecasts 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4053480
求助须知:如何正确求助?哪些是违规求助? 3591638
关于积分的说明 11413229
捐赠科研通 3317755
什么是DOI,文献DOI怎么找? 1824864
邀请新用户注册赠送积分活动 896263
科研通“疑难数据库(出版商)”最低求助积分说明 817398