Toward Practical Solid-State Lithium–Sulfur Batteries: Challenges and Perspectives

锂(药物) 电池(电) 电解质 快离子导体 阴极 阳极 材料科学 有机自由基电池 锂离子电池的纳米结构 纳米技术 锂硫电池 化学工程 化学 电极 功率(物理) 工程类 物理化学 内分泌学 物理 医学 量子力学
作者
Saneyuki Ohno,Wolfgang G. Zeier
出处
期刊:Accounts of materials research [American Chemical Society]
卷期号:2 (10): 869-880 被引量:38
标识
DOI:10.1021/accountsmr.1c00116
摘要

ConspectusThe energy density of the ubiquitous lithium-ion batteries is rapidly approaching its theoretical limit. To go beyond, a promising strategy is the replacement of conventional intercalation-type materials with conversion-type materials possessing substantially higher capacities. Among the conversion-type cathode materials, sulfur constitutes a cost-effective and earth-abundant element with a high theoretical capacity that has a potential to be game-changing, especially within an emerging solid-state battery configuration. Employment of nonflammable solid electrolytes that improves battery safety and boosts the energy density, as lithium metal anodes are also viable. The long-standing inherent problem of conventional lithium–sulfur batteries, arising from the reaction intermediates dissolved in liquid electrolytes, can be eliminated with inorganic solid ion conductors. In particular, the highly conducting and easily processable lithium-thiophosphates have successfully enabled the lab-scale solid-state lithium–sulfur cells to achieve close-to-theoretical capacities. For applications requiring safe, energy-dense, lightweight batteries, solid-state lithium–sulfur batteries are an ideal choice that could surpass conventional lithium-ion batteries.Nevertheless, there are challenges specific to practical solid-state lithium–sulfur batteries, beyond the typical challenges inherent to solid-state batteries in general. While the conversion reaction of sulfur realizes a large specific capacity, the associated significant total volume changes of the active material results in contact losses among the cathode components and, consequently, decreases reversible capacity. Additionally, the ionically and electronically insulating active material requires composite formation with solid electrolytes and electron-conductive additives to secure sufficient ion and electron supply at a triple-phase boundary. However, the compositing process itself makes the carrier transport pathways very tortuous and requires the balancing of carrier transport and optimization of the attainable energy density. Lastly, the requirement of a high interfacial area to establish sufficient triple-phase boundaries promotes the degradation of the solid electrolytes, and the formation of less-conductive interphases further deteriorates the transport in the composites.This Account focuses on the challenges associated with developing practical solid-state lithium–sulfur batteries and provides an overview over recently developed concepts to tackle these critical challenges: (1) Introduction of the conversion efficiency to enable quantitative assessments of the impact of chemo-mechanical failure. (2) For long-term cycling, the electrolyte degradation at the interface and the electrochemical activity of the formed interphases come into play. Practical stability tests with increased interfacial areas and subsequently altered reversal potentials can quantify the magnitude of the electrolyte degradation and confirm influences of reversible redox activity of the interphases. (3) Monitoring the effective conductivity in the composites clarifies correlations between transport and cyclability, further highlighting the need of quantitative measurements to address the composite carrier transport. (4) Impedance spectroscopy combined with transmission-line model analysis as a function of applied potentials can visualize the stability window of good effective ion transport to utilize both the capacity contributions from redox-active interphases and the high ionic conductivity. In the end, a roadmap toward the practical solid-state lithium–sulfur batteries will be presented.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
bkagyin应助科研通管家采纳,获得10
1秒前
SOLOMON应助科研通管家采纳,获得10
1秒前
李爱国应助科研通管家采纳,获得10
1秒前
赘婿应助科研通管家采纳,获得10
1秒前
李爱国应助科研通管家采纳,获得10
1秒前
李健应助科研通管家采纳,获得10
1秒前
2秒前
橙c美式完成签到,获得积分10
4秒前
宋行远发布了新的文献求助10
4秒前
tutuee完成签到,获得积分10
7秒前
7秒前
defupai发布了新的文献求助10
7秒前
luchong发布了新的文献求助10
10秒前
合适忆南完成签到,获得积分10
11秒前
11秒前
啦啦啦完成签到,获得积分10
12秒前
高源伯完成签到 ,获得积分10
13秒前
nefu biology发布了新的文献求助10
16秒前
PlanetaryLayer完成签到,获得积分10
17秒前
18秒前
科研通AI2S应助defupai采纳,获得10
19秒前
DongLin发布了新的文献求助10
21秒前
丑丑虎完成签到,获得积分20
21秒前
22秒前
宫宛儿完成签到,获得积分10
23秒前
27秒前
xbms关注了科研通微信公众号
28秒前
清脆雪糕发布了新的文献求助10
28秒前
33秒前
JOY应助开放冰香采纳,获得10
33秒前
benben应助刘女士采纳,获得10
38秒前
39秒前
街道办事部完成签到,获得积分10
39秒前
CodeCraft应助luchong采纳,获得10
43秒前
44秒前
完美世界应助xbms采纳,获得10
46秒前
52秒前
55秒前
高分求助中
Teaching Social and Emotional Learning in Physical Education 900
Plesiosaur extinction cycles; events that mark the beginning, middle and end of the Cretaceous 800
Recherches Ethnographiques sue les Yao dans la Chine du Sud 500
Two-sample Mendelian randomization analysis reveals causal relationships between blood lipids and venous thromboembolism 500
[Lambert-Eaton syndrome without calcium channel autoantibodies] 460
Wisdom, Gods and Literature Studies in Assyriology in Honour of W. G. Lambert 400
薩提亞模式團體方案對青年情侶輔導效果之研究 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 有机化学 工程类 生物化学 纳米技术 物理 内科学 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 电极 光电子学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 2394514
求助须知:如何正确求助?哪些是违规求助? 2098145
关于积分的说明 5287277
捐赠科研通 1825633
什么是DOI,文献DOI怎么找? 910227
版权声明 559972
科研通“疑难数据库(出版商)”最低求助积分说明 486501