QSMxT: Robust masking and artifact reduction for quantitative susceptibility mapping

定量磁化率图 计算机科学 裸奔 工件(错误) 成像体模 遮罩(插图) 人工智能 先验概率 模式识别(心理学) 计算机视觉 贝叶斯概率 物理 磁共振成像 医学 艺术 光学 视觉艺术 放射科
作者
Ashley Stewart,Simon Robinson,Kieran O‘Brien,Jin Jin,Georg Widhalm,Gilbert Hangel,Angela Walls,Jonathan Goodwin,Korbinian Eckstein,Monique C. Tourell,Catherine Morgan,Aswin Narayanan,Markus Barth,Steffen Bollmann
出处
期刊:Magnetic Resonance in Medicine [Wiley]
卷期号:87 (3): 1289-1300 被引量:29
标识
DOI:10.1002/mrm.29048
摘要

Quantitative susceptibility mapping (QSM) estimates the spatial distribution of tissue magnetic susceptibilities from the phase of a gradient-echo signal. QSM algorithms require a signal mask to delineate regions with reliable phase for subsequent susceptibility estimation. Existing masking techniques used in QSM have limitations that introduce artifacts, exclude anatomical detail, and rely on parameter tuning and anatomical priors that narrow their application. Here, a robust masking and reconstruction procedure is presented to overcome these limitations and enable automated QSM processing. Moreover, this method is integrated within an open-source software framework: QSMxT.A robust masking technique that automatically separates reliable from less reliable phase regions was developed and combined with a two-pass reconstruction procedure that operates on the separated sources before combination, extracting more information and suppressing streaking artifacts.Compared with standard masking and reconstruction procedures, the two-pass inversion reduces streaking artifacts caused by unreliable phase and high dynamic ranges of susceptibility sources. It is also robust across a range of acquisitions at 3 T in volunteers and phantoms, at 7 T in tumor patients, and in an in silico head phantom, with significant artifact and error reductions, greater anatomical detail, and minimal parameter tuning.The two-pass masking and reconstruction procedure separates reliable from less reliable phase regions, enabling a more accurate QSM reconstruction that mitigates artifacts, operates without anatomical priors, and requires minimal parameter tuning. The technique and its integration within QSMxT makes QSM processing more accessible and robust to streaking artifacts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
田様应助科研通管家采纳,获得10
刚刚
orixero应助科研通管家采纳,获得10
刚刚
Ava应助科研通管家采纳,获得10
1秒前
1秒前
李爱国应助科研通管家采纳,获得10
1秒前
田様应助科研通管家采纳,获得10
1秒前
英姑应助科研通管家采纳,获得10
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
1秒前
搜集达人应助科研通管家采纳,获得10
1秒前
CodeCraft应助科研通管家采纳,获得10
1秒前
1秒前
上官若男应助科研通管家采纳,获得10
1秒前
1秒前
赘婿应助科研通管家采纳,获得10
1秒前
小马甲应助科研通管家采纳,获得30
1秒前
1秒前
2秒前
3秒前
xlk2222发布了新的文献求助10
4秒前
4秒前
NexusExplorer应助淘气科研采纳,获得10
5秒前
6秒前
aylwtt发布了新的文献求助50
6秒前
小蘑菇应助熊熊熊采纳,获得10
7秒前
充电宝应助花开米兰城采纳,获得10
7秒前
7秒前
9秒前
9秒前
9秒前
mt完成签到,获得积分10
10秒前
10秒前
雪满头应助hi_traffic采纳,获得10
12秒前
Hannahcx发布了新的文献求助10
12秒前
立食劳栖发布了新的文献求助10
13秒前
高大黄蜂完成签到,获得积分10
13秒前
林非鹿完成签到 ,获得积分10
13秒前
Micahaeler完成签到,获得积分10
13秒前
14秒前
董亦菲完成签到 ,获得积分10
14秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
Biology of the Indian Stingless Bee: Tetragonula iridipennis Smith 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 680
Thermal Quadrupoles: Solving the Heat Equation through Integral Transforms 500
SPSS for Windows Step by Step: A Simple Study Guide and Reference, 17.0 Update (10th Edition) 500
Chinese Buddhist Monasteries: Their Plan and Its Function As a Setting for Buddhist Monastic Life 300
PBSM: Predictive Bi-Preference Stable Matching in Spatial Crowdsourcing 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4122466
求助须知:如何正确求助?哪些是违规求助? 3660321
关于积分的说明 11586498
捐赠科研通 3361643
什么是DOI,文献DOI怎么找? 1847116
邀请新用户注册赠送积分活动 911712
科研通“疑难数据库(出版商)”最低求助积分说明 827554