A dual-mode tactile hardness sensor for intraoperative tumor detection and tactile imaging in robot-assisted minimally invasive surgery

双模 触觉传感器 侵入性外科 触觉显示器 生物医学工程 对偶(语法数字) 医学 人工智能 机器人 计算机科学 外科 工程类 电子工程 文学类 艺术
作者
Yingxuan Zhang,Xiaoyong Wei,Wenchao Yue,Chengjun Zhu,Feng Ju
出处
期刊:Smart Materials and Structures [IOP Publishing]
卷期号:30 (8): 085041-085041 被引量:22
标识
DOI:10.1088/1361-665x/ac112b
摘要

Abstract Intraoperative tumor detection and shape identification through manual palpation are routinely performed in traditional open surgeries to ensure complete tumor resection. However, most existing robot-assisted minimally invasive surgery (RMIS) systems lack tactile feedback and rely on vision heavily. Traditional tactile sensing methods require the sensor to be placed normal to the tissue surface. But this requirement cannot always be met due to the limited degrees of freedom and the complexity of the environment in confined spaces. This paper proposes a miniaturized piezoelectric tactile sensor for tissue hardness detection by measuring its electrical impedance spectrum. It has two unique detection modes in two orthogonal directions—transverse and longitudinal, and can detect hardness even when the contact angle is large. It is verified by simulations and experiments that both detection modes can be used to detect hardness in the normal contact condition. However, in the case of hardness detection at a large contact angle, the sensitivity of the sensor in the transverse detection mode is significantly higher than that in the longitudinal mode, implying that this mode is more suitable for the large-angle detection. The sensor is then tested on silicone phantoms with hard inclusions and also on an ex vivo porcine liver. In addition, a tactile imaging algorithm based on Gaussian process regression is used to generate the complete hardness distribution of the test sample, which is further processed to extract the shape and boundary of the hard inclusion. The results show that the accuracy of shape detection is high (recall ⩾ 95%, specificity ⩾ 97%), and the smallest feature size it could detect is 1.3 mm. This proves that the proposed tactile sensor has the potential to perform high-accuracy tumor detection in RMIS.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wanci应助科科采纳,获得10
2秒前
邱佩群发布了新的文献求助10
2秒前
小树完成签到 ,获得积分10
2秒前
浮游应助张张赶紧看文献采纳,获得10
2秒前
生动又夏完成签到,获得积分10
3秒前
呐呐呐完成签到,获得积分10
3秒前
Dr.han发布了新的文献求助10
3秒前
4秒前
JamesPei应助研究牲采纳,获得10
5秒前
肥猫啊平发布了新的文献求助10
5秒前
6秒前
第一张完成签到,获得积分10
6秒前
浮游应助张张赶紧看文献采纳,获得10
7秒前
南城不南完成签到,获得积分10
8秒前
哒哒完成签到,获得积分10
10秒前
曾经耳机完成签到 ,获得积分10
10秒前
ZY发布了新的文献求助10
10秒前
嗯嗯发布了新的文献求助10
12秒前
Rufus完成签到,获得积分10
12秒前
蔡蔡完成签到 ,获得积分10
13秒前
zhouzhou完成签到,获得积分20
13秒前
14秒前
充电宝应助lszhw采纳,获得10
16秒前
CAT发布了新的文献求助10
18秒前
情怀应助肥猫啊平采纳,获得10
23秒前
ww_发布了新的文献求助30
23秒前
mmr完成签到,获得积分10
25秒前
闪电爱学习完成签到,获得积分20
25秒前
yuexi完成签到,获得积分10
26秒前
26秒前
26秒前
wink发布了新的文献求助10
29秒前
汉堡包应助明天见采纳,获得10
30秒前
30秒前
32秒前
32秒前
邱佩群完成签到,获得积分10
33秒前
IShowSpeed完成签到,获得积分10
34秒前
lszhw发布了新的文献求助10
35秒前
revew666完成签到,获得积分10
35秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5306048
求助须知:如何正确求助?哪些是违规求助? 4451900
关于积分的说明 13853368
捐赠科研通 4339433
什么是DOI,文献DOI怎么找? 2382558
邀请新用户注册赠送积分活动 1377532
关于科研通互助平台的介绍 1345147