Using artificial intelligence to diagnose fresh osteoporotic vertebral fractures on magnetic resonance images

医学 磁共振成像 放射科
作者
Akito Yabu,Masatoshi Hoshino,Hitoshi Tabuchi,Shinji Takahashi,Hiroki Masumoto,Masahiro Akada,Shoji Morita,Takafumi Maeno,Masayoshi Iwamae,Hiroyuki Inose,Tsuyoshi Kato,Toshitaka Yoshii,Tadao Tsujio,Hidetomi Terai,Hiromitsu Toyoda,Akinobu Suzuki,Koji Tamai,Shoichiro Ohyama,Yusuke Hori,Atsushi Okawa
出处
期刊:The Spine Journal [Elsevier]
卷期号:21 (10): 1652-1658 被引量:60
标识
DOI:10.1016/j.spinee.2021.03.006
摘要

Background ContextAccurate diagnosis of osteoporotic vertebral fracture (OVF) is important for improving treatment outcomes; however, the gold standard has not been established yet. A deep-learning approach based on convolutional neural network (CNN) has attracted attention in the medical imaging field.PurposeTo construct a CNN to detect fresh OVF on magnetic resonance (MR) images.Study Design/SettingRetrospective analysis of MR imagesPatient SampleThis retrospective study included 814 patients with fresh OVF. For CNN training and validation, 1624 slices of T1-weighted MR image were obtained and used.Outcome MeasureWe plotted the receiver operating characteristic (ROC) curve and calculated the area under the curve (AUC) in order to evaluate the performance of the CNN. Consequently, the sensitivity, specificity, and accuracy of the diagnosis by CNN and that of the two spine surgeons were compared.MethodsWe constructed an optimal model using ensemble method by combining nine types of CNNs to detect fresh OVFs. Furthermore, two spine surgeons independently evaluated 100 vertebrae, which were randomly extracted from test data.ResultsThe ensemble method using VGG16, VGG19, DenseNet201, and ResNet50 was the combination with the highest AUC of ROC curves. The AUC was 0.949. The evaluation metrics of the diagnosis (CNN/surgeon 1/surgeon 2) for 100 vertebrae were as follows: sensitivity: 88.1%/88.1%/100%; specificity: 87.9%/86.2%/65.5%; accuracy: 88.0%/87.0%/80.0%.ConclusionsIn detecting fresh OVF using MR images, the performance of the CNN was comparable to that of two spine surgeons.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
今后应助悲伤小蝴蝶采纳,获得10
1秒前
1秒前
xin完成签到,获得积分10
1秒前
2秒前
aaawen发布了新的文献求助10
2秒前
抹缇卡完成签到 ,获得积分10
2秒前
飞快的雁发布了新的文献求助10
3秒前
科研通AI6应助内向的忘幽采纳,获得30
3秒前
3秒前
tt完成签到 ,获得积分10
3秒前
王志远发布了新的文献求助10
4秒前
SciGPT应助yu采纳,获得10
4秒前
合适的话三个火完成签到,获得积分10
4秒前
科研小白发布了新的文献求助10
5秒前
痞子毛发布了新的文献求助10
5秒前
5秒前
量子星尘发布了新的文献求助10
5秒前
TJJJJJ发布了新的文献求助10
6秒前
6秒前
雪白微笑完成签到,获得积分20
7秒前
7秒前
六水居士完成签到,获得积分10
8秒前
LL发布了新的文献求助10
8秒前
8秒前
8秒前
123xmc发布了新的文献求助10
8秒前
rerere发布了新的文献求助10
9秒前
吴迪发布了新的文献求助10
9秒前
无极微光应助聪聪冲冲采纳,获得20
9秒前
9秒前
10秒前
10秒前
Susu发布了新的文献求助10
11秒前
十一完成签到,获得积分10
11秒前
11秒前
虚心谷梦完成签到,获得积分10
12秒前
13秒前
nn发布了新的文献求助10
14秒前
汉堡包应助雪白微笑采纳,获得30
14秒前
池鱼完成签到 ,获得积分10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Between high and low : a chronology of the early Hellenistic period 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5669406
求助须知:如何正确求助?哪些是违规求助? 4895943
关于积分的说明 15127358
捐赠科研通 4828173
什么是DOI,文献DOI怎么找? 2585268
邀请新用户注册赠送积分活动 1538894
关于科研通互助平台的介绍 1497201