清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Recurrent neural networks for complicated seismic dynamic response prediction of a slope system

人工神经网络 地质学 计算机科学 非线性系统
作者
Yu Huang,Xu Han,Liuyuan Zhao
出处
期刊:Engineering Geology [Elsevier BV]
卷期号:289: 106198- 被引量:7
标识
DOI:10.1016/j.enggeo.2021.106198
摘要

Abstract Earthquake-induced landslides have resulted in huge casualties and considerable financial repercussions, and slope dynamic response analysis has always been a hot issue. The prediction of the dynamic response of a slope before the occurrence of future earthquakes will benefit disaster prevention and reduction. Traditional methods (such as the finite element method) are mostly based on simplified physical mechanisms and cannot accurately predict the dynamic response of complicated slope systems. This article innovatively applies novel recurrent neural networks to the prediction of the slope dynamic response. Using the results of large-scale shaking-table tests, we introduced a moving-steps strategy and established three recurrent neural network models: Simple-RNN, LSTM and GRU models. Moreover, a multi-layer perceptron prediction model was trained for comparative verification. We also conducted three experiments to investigate the effect of the data volume on the models. Results show that recurrent neural networks perform well in the analysis of the seismic dynamic response of a slope and provide better predictions than the multi-layer perceptron network. When there are many data, the LSTM and GRU models have advantages, and the confidence indexes of their predictions with normalized error within ±5% are 84.5% and 86.4%, respectively. It is concluded that recurrent neural networks are suitable for the time-series prediction of dynamic responses to seismic loads. To some extent, this paper may help reduce the future risks and losses of earthquake-triggered landslide disasters.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
马香芦完成签到,获得积分10
8秒前
AUGKING27完成签到 ,获得积分10
15秒前
秋秋完成签到 ,获得积分10
20秒前
无情的冰香完成签到 ,获得积分10
30秒前
neversay4ever完成签到 ,获得积分10
31秒前
氟锑酸完成签到 ,获得积分10
32秒前
zpc猪猪完成签到,获得积分10
36秒前
专注的觅云完成签到 ,获得积分10
38秒前
harden9159完成签到,获得积分10
39秒前
唐泽雪穗应助科研通管家采纳,获得10
43秒前
唐泽雪穗应助科研通管家采纳,获得10
43秒前
唐泽雪穗应助科研通管家采纳,获得10
43秒前
charih完成签到 ,获得积分10
49秒前
北北完成签到 ,获得积分10
1分钟前
Yang完成签到 ,获得积分10
1分钟前
李健的小迷弟应助半夏采纳,获得10
1分钟前
1分钟前
半夏发布了新的文献求助10
1分钟前
su完成签到 ,获得积分0
1分钟前
CipherSage应助油麦采纳,获得10
1分钟前
朱明完成签到 ,获得积分10
2分钟前
xfcy发布了新的文献求助10
2分钟前
王世卉完成签到,获得积分10
2分钟前
2分钟前
2分钟前
阆苑仙葩发布了新的文献求助10
2分钟前
油麦发布了新的文献求助10
2分钟前
xfcy完成签到,获得积分10
2分钟前
可爱妹完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
风中的蜜蜂完成签到,获得积分10
2分钟前
ppapp完成签到 ,获得积分10
2分钟前
诺亚方舟哇哈哈完成签到 ,获得积分0
2分钟前
唐泽雪穗应助科研通管家采纳,获得10
2分钟前
李爱国应助科研通管家采纳,获得10
2分钟前
唐泽雪穗应助科研通管家采纳,获得10
2分钟前
Lucas应助科研通管家采纳,获得10
2分钟前
沐沐心完成签到 ,获得积分10
2分钟前
阆苑仙葩完成签到 ,获得积分10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5066280
求助须知:如何正确求助?哪些是违规求助? 4288501
关于积分的说明 13360039
捐赠科研通 4107585
什么是DOI,文献DOI怎么找? 2249306
邀请新用户注册赠送积分活动 1254773
关于科研通互助平台的介绍 1186907