Efficient Hit-to-Lead Searching of Kinase Inhibitor Chemical Space via Computational Fragment Merging

计算机科学 计算生物学 化学空间 药物发现 算法 激酶 对接(动物) 化学信息学 化学 虚拟筛选 片段(逻辑) 小分子 可药性 化学
作者
Grigorii V. Andrianov,Wern Juin Gabriel Ong,Ilya G. Serebriiskii,John Karanicolas
出处
期刊:bioRxiv
标识
DOI:10.1101/2021.06.01.446684
摘要

Abstract In early stage drug discovery, the hit-to-lead optimization (or “hit expansion”) stage entails starting from a newly-identified active compound, and improving its potency or other properties. Traditionally this process relies on synthesizing and evaluating a series of analogs to build up structure-activity relationships. Here, we describe a computational strategy focused on kinase inhibitors, intended to expedite the process of identifying analogs with improved potency. Our protocol begins from an inhibitor of the target kinase, and generalizes the synthetic route used to access it. By searching for commercially-available replacements for the individual building blocks used to make the parent inhibitor, we compile an enumerated library of compounds that can be accessed using the same chemical transformations; these huge libraries can exceed many millions – or billions – of compounds. Because the resulting libraries are much too large for explicit virtual screening, we instead consider alternate approaches to identify the top-scoring compounds. We find that contributions from individual substituents are well-described by a pairwise additivity approximation, provided that the corresponding fragments position their shared core in precisely the same way relative to the binding site. This key insight allows us to determine which fragments are suitable for merging into a single new compounds, and which are not. Further, the use of the pairwise approximation allows interaction energies to be assigned to each compound in the library, without the need for any further structure-based modeling: interaction energies instead can be reliably estimated from the energies of the component fragments, and the reduced computational requirements allow for flexible energy minimizations that allow the kinase to respond to each substitution. We demonstrate this protocol using libraries built from six representative kinase inhibitors drawn from the literature, which target five different kinases: CDK9, CHK1, CDK2, EGFRT790M, and ACK1. In each example, the enumerated library includes additional analogs reported by the original study to have activity, and these analogs are successfully prioritized within the library. We envision that the insights from this work can facilitate the rapid assembly and screening of increasingly large libraries for focused hit-to-lead optimization. To enable adoption of these methods and to encourage further analyses, we disseminate the computational tools needed to deploy this protocol. Graphical Abstract
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ding应助李成哲采纳,获得10
1秒前
zzz完成签到,获得积分20
1秒前
2秒前
5秒前
迷失自我发布了新的文献求助30
6秒前
小大巫完成签到,获得积分0
6秒前
戈多完成签到,获得积分10
7秒前
metylilis发布了新的文献求助10
9秒前
9秒前
情怀应助刀刀采纳,获得20
9秒前
young完成签到,获得积分10
10秒前
11秒前
IDHNAPHO发布了新的文献求助40
11秒前
华仔应助不吃了采纳,获得10
12秒前
兰禅子完成签到,获得积分10
12秒前
13秒前
领导范儿应助虎虎虎采纳,获得10
13秒前
大树发布了新的文献求助10
14秒前
14秒前
自由的樱桃应助李成哲采纳,获得10
14秒前
14秒前
14秒前
15秒前
大个应助路遥采纳,获得10
15秒前
Dasiliy发布了新的文献求助10
15秒前
16秒前
ccc发布了新的文献求助10
16秒前
xiaotudou95完成签到,获得积分10
16秒前
17秒前
眼睛大雨筠应助young采纳,获得30
17秒前
18秒前
18秒前
顾矜应助Jiahui采纳,获得10
18秒前
19秒前
111发布了新的文献求助10
19秒前
DuiK发布了新的文献求助30
19秒前
chen完成签到,获得积分10
19秒前
123321发布了新的文献求助10
19秒前
卓垚发布了新的文献求助10
20秒前
辛勤雨泽发布了新的文献求助10
20秒前
高分求助中
Africanfuturism: African Imaginings of Other Times, Spaces, and Worlds 3000
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
Exhibiting Chinese Art in Asia: Histories, Politics and Practices 700
相变热-动力学 520
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
ACSM's guidelines for exercise testing and prescription, 12 ed 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3896449
求助须知:如何正确求助?哪些是违规求助? 3440284
关于积分的说明 10816845
捐赠科研通 3165341
什么是DOI,文献DOI怎么找? 1748670
邀请新用户注册赠送积分活动 844887
科研通“疑难数据库(出版商)”最低求助积分说明 788305