水溶液
选择性
吸附
光纤
水溶液中的金属离子
光纤传感器
化学
干扰(通信)
纤维
材料科学
金属
纳米技术
计算机科学
电信
有机化学
催化作用
频道(广播)
作者
Marziyeh Nazari,Abbas Amini,Nathan T. Eden,Mikel Duke,Chun Cheng,Matthew Hill
摘要
Lead detection for biological environments, aqueous resources, and medicinal compounds, rely mainly on either utilizing bulky lab equipment such as ICP-OES or ready-made sensors, which are based on colorimetry with some limitations including selectivity and low interference. Remote, rapid and efficient detection of heavy metals in aqueous solutions at ppm and sub-ppm levels have faced significant challenges that requires novel compounds with such ability. Here, a UiO-66(Zr) metal-organic framework (MOF) functionalized with SO3H group (SO3H-UiO-66(Zr)) is deposited on the end-face of an optical fiber to detect lead cations (Pb2+) in water at 25.2, 43.5 and 64.0 ppm levels. The SO3H-UiO-66(Zr) system provides a Fabry–Perot sensor by which the lead ions are detected rapidly (milliseconds) at 25.2 ppm aqueous solution reflecting in the wavelength shifts in interference spectrum. The proposed removal mechanism is based on the adsorption of [Pb(OH2)6]2+ in water on SO3H-UiO-66(Zr) due to a strong affinity between functionalized MOF and lead. This is the first work that advances a multi-purpose optical fiber-coated functional MOF as an on-site remote chemical sensor for rapid detection of lead cations at extremely low concentrations in an aqueous system.
科研通智能强力驱动
Strongly Powered by AbleSci AI