MobiHisNet: A Lightweight CNN in Mobile Edge Computing for Histopathological Image Classification

计算机科学 移动边缘计算 人工智能 计算机视觉 上下文图像分类 边缘计算 移动计算 模式识别(心理学) GSM演进的增强数据速率 图像(数学) 计算机网络
作者
Abhinav Kumar,Anshul Sharma,Vandana Bharti,Amit Kumar Singh,Sanjay Kumar Singh,Sonal Saxena
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:8 (24): 17778-17789 被引量:59
标识
DOI:10.1109/jiot.2021.3119520
摘要

Recent advances in artificial intelligence (AI), especially convolutional neural networks (CNNs), alongside the digitization of histopathological images, have made the computer-aided diagnosis of breast cancer a reality. However, deep learning-based approaches are computationally expensive and have huge parameters, which makes them less affordable for edge devices. In order to make them affordable for edge devices, the whole classification model needs to be compressed while maintaining accuracy. Providing a low-cost solution for histopathological diagnosis in the recent edge-computing world is of utmost importance. Therefore, in this study, we propose "MobiHisNet," an efficient and lightweight CNN model for histopathological image classification (HIC) based on MobileNet. MobiHisNet was successfully deployed on a Raspberry Pi, as well as three mobile devices, demonstrating its ability to run on a lightweight and portable processor. Our studies indicated that a depth parameter ( $\gamma = 0.5$ ) and a 16-bit quantization are the optimum parameters for the proposed model while balancing the accuracy, inference time, and memory peak requirements. Compared to the state-of-the-art, pretrained models, MobiHisNet has fewer parameters and calculations, resulting in faster image classification. This renders it more viable for production purposes and applications on edge devices. In addition, MobiHisNet is computationally faster than VGG16, ResNet50, Xception, and InceptionV3 by twenty-seven, eight, six, and five times, respectively. This also outperforms all the baseline models with the moderate model size and FLOP counts. Experiments on breast cancer HIC (BreakHis) data sets show superior performance of MobiHisNet on edge devices in terms of higher accuracy, lesser complexity, and lesser memory requirements. Thus, it has a high potential for deployment in mobile edge devices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
搞科研的小闫完成签到,获得积分20
1秒前
星辰发布了新的文献求助10
2秒前
浮游应助研友_Zb1rln采纳,获得10
7秒前
小蘑菇应助月亮采纳,获得10
10秒前
PLA完成签到,获得积分10
12秒前
天天快乐应助QQ采纳,获得10
13秒前
开心妙之完成签到 ,获得积分20
16秒前
外向怜晴完成签到,获得积分10
18秒前
18秒前
共享精神应助zzx采纳,获得10
18秒前
斯文败类应助小茶采纳,获得10
18秒前
19秒前
kai chen完成签到 ,获得积分0
20秒前
情怀应助碧蓝猕猴桃采纳,获得10
22秒前
22秒前
23秒前
24秒前
月亮发布了新的文献求助10
24秒前
25秒前
QQ完成签到,获得积分10
26秒前
kai发布了新的文献求助10
26秒前
27秒前
小鱼儿发布了新的文献求助10
27秒前
27秒前
Rufus发布了新的文献求助10
27秒前
烟花应助JuntaoLi采纳,获得10
28秒前
嘻嘻完成签到 ,获得积分10
29秒前
30秒前
单薄广山完成签到,获得积分10
30秒前
权翼发布了新的文献求助10
30秒前
32秒前
andfjkahfilaw完成签到,获得积分20
33秒前
zzx发布了新的文献求助10
33秒前
HYW驳回了兔子应助
37秒前
godblessyou完成签到,获得积分20
38秒前
十一驳回了LYF应助
38秒前
39秒前
Jasper应助1111颂采纳,获得10
40秒前
日落关注了科研通微信公众号
42秒前
43秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5306557
求助须知:如何正确求助?哪些是违规求助? 4452324
关于积分的说明 13854559
捐赠科研通 4339805
什么是DOI,文献DOI怎么找? 2382859
邀请新用户注册赠送积分活动 1377728
关于科研通互助平台的介绍 1345407