Transfer Learning Strategy Based on Unsupervised Learning and Ensemble Learning for Breast Cancer Molecular Subtype Prediction Using Dynamic Contrast‐Enhanced MRI

人工智能 学习迁移 计算机科学 深度学习 集成学习 对比度(视觉) 磁共振成像 机器学习 模式识别(心理学) 接收机工作特性 试验装置 集合预报 动态增强MRI 乳腺癌 癌症 放射科 医学 内科学
作者
Rong Sun,Xuewen Hou,Xiujuan Li,Yuanzhong Xie,Shengdong Nie
出处
期刊:Journal of Magnetic Resonance Imaging [Wiley]
卷期号:55 (5): 1518-1534 被引量:18
标识
DOI:10.1002/jmri.27955
摘要

Background Imaging‐driven deep learning strategies focus on training from scratch and transfer learning. However, the performance of training from scratch is often impeded by the lack of large‐scale labeled training data. Additionally, owing to the differences between source and target domains, analyzing medical image tasks satisfactorily via transfer learning based on ImageNet is difficult. Purpose To investigate two transfer learning algorithms for breast cancer molecular subtype prediction (luminal and non‐luminal) based on unsupervised pre‐training and ensemble learning: M_EL and B_EL, using malignant and benign datasets as the source domain, respectively. Study Type Retrospective. Population Eight hundred and thirty‐three female patients with histologically confirmed breast lesions (567 benign and 266 malignant cases) were selected. In the 5‐fold cross‐validation, the malignant cohort was randomly divided into 5 subsets to form a training set (80%) and a validation set (20%). Field Strength/Sequence 3.0 T, dynamic contrast‐enhanced magnetic resonance imaging ( DCE ‐ MRI) using T1 ‐weighted high‐resolution isotropic volume examination. Assessment First, three datasets acquired at different times post‐contrast were preprocessed as unlabeled source domains. Second, three baseline networks corresponding to the different MRI post‐contrast phases were built, optimized by a combination of mutual information maximization between high‐ and low‐level representations and prior distribution constraints. Next, the pre‐trained networks were fine‐tuned on the labeled target domain. Finally, prediction results were integrated using weighted voting‐based ensemble learning. Statistical Tests Mean accuracy, precision, specificity, and area under receiver operating characteristic curve (AUC) were obtained with 5‐fold cross‐validation. P < 0.05 was considered to be statistically significant. Results Compared with a convolutional long short‐term memory network, pre‐trained VGG‐16, VGG‐19, and DenseNet‐121 from ImageNet, M_EL and B_EL exhibited significantly more optimized prediction performance (specificity: 90.5% and 89.9%; accuracy: 82.6% and 81.1%; precision: 91.2% and 90.9%; AUC: 0.836 and 0.823, respectively). Data Conclusion Transfer learning based on unsupervised pre‐training may facilitate automatic prediction of breast cancer molecular subtypes. Level of Evidence 3 Technical Efficacy Stage 2
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
3秒前
rui完成签到,获得积分20
4秒前
4秒前
@@发布了新的文献求助10
5秒前
hahhh7发布了新的文献求助10
6秒前
6秒前
6秒前
7秒前
洪亮完成签到,获得积分0
9秒前
10秒前
yuminger完成签到 ,获得积分10
11秒前
刘66发布了新的文献求助10
11秒前
OmmeHabiba完成签到,获得积分10
12秒前
14秒前
小南完成签到,获得积分10
15秒前
15秒前
幸福的向彤完成签到,获得积分10
18秒前
rui发布了新的文献求助10
19秒前
20秒前
20秒前
研友_LX66qZ完成签到,获得积分10
21秒前
22秒前
Wonder完成签到,获得积分10
23秒前
yznfly举报circles求助涉嫌违规
23秒前
沧海云完成签到 ,获得积分10
24秒前
yznfly应助@@采纳,获得30
25秒前
feifeizi发布了新的文献求助10
26秒前
一叶扁舟发布了新的文献求助10
26秒前
薯条发布了新的文献求助10
26秒前
源源源发布了新的文献求助10
30秒前
34秒前
34秒前
123完成签到,获得积分10
35秒前
华仔应助安详的煎蛋采纳,获得10
36秒前
37秒前
47发布了新的文献求助10
38秒前
39秒前
39秒前
高分求助中
ФОРМИРОВАНИЕ АО "МЕЖДУНАРОДНАЯ КНИГА" КАК ВАЖНЕЙШЕЙ СИСТЕМЫ ОТЕЧЕСТВЕННОГО КНИГОРАСПРОСТРАНЕНИЯ 3000
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 500
Quantum Computing for Quantum Chemistry 500
Thermal Expansion of Solids (CINDAS Data Series on Material Properties, v. I-4) 470
Fire Protection Handbook, 21st Edition volume1和volume2 360
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3902533
求助须知:如何正确求助?哪些是违规求助? 3447311
关于积分的说明 10848383
捐赠科研通 3172552
什么是DOI,文献DOI怎么找? 1752994
邀请新用户注册赠送积分活动 847467
科研通“疑难数据库(出版商)”最低求助积分说明 789993