已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Transfer Learning Strategy Based on Unsupervised Learning and Ensemble Learning for Breast Cancer Molecular Subtype Prediction Using Dynamic Contrast‐Enhanced MRI

人工智能 学习迁移 计算机科学 深度学习 集成学习 对比度(视觉) 磁共振成像 机器学习 模式识别(心理学) 接收机工作特性 试验装置 集合预报 动态增强MRI 乳腺癌 癌症 放射科 医学 内科学
作者
Rong Sun,Xuewen Hou,Xiujuan Li,Yuanzhong Xie,Shengdong Nie
出处
期刊:Journal of Magnetic Resonance Imaging [Wiley]
卷期号:55 (5): 1518-1534 被引量:28
标识
DOI:10.1002/jmri.27955
摘要

Background Imaging‐driven deep learning strategies focus on training from scratch and transfer learning. However, the performance of training from scratch is often impeded by the lack of large‐scale labeled training data. Additionally, owing to the differences between source and target domains, analyzing medical image tasks satisfactorily via transfer learning based on ImageNet is difficult. Purpose To investigate two transfer learning algorithms for breast cancer molecular subtype prediction (luminal and non‐luminal) based on unsupervised pre‐training and ensemble learning: M_EL and B_EL, using malignant and benign datasets as the source domain, respectively. Study Type Retrospective. Population Eight hundred and thirty‐three female patients with histologically confirmed breast lesions (567 benign and 266 malignant cases) were selected. In the 5‐fold cross‐validation, the malignant cohort was randomly divided into 5 subsets to form a training set (80%) and a validation set (20%). Field Strength/Sequence 3.0 T, dynamic contrast‐enhanced magnetic resonance imaging ( DCE ‐ MRI) using T1 ‐weighted high‐resolution isotropic volume examination. Assessment First, three datasets acquired at different times post‐contrast were preprocessed as unlabeled source domains. Second, three baseline networks corresponding to the different MRI post‐contrast phases were built, optimized by a combination of mutual information maximization between high‐ and low‐level representations and prior distribution constraints. Next, the pre‐trained networks were fine‐tuned on the labeled target domain. Finally, prediction results were integrated using weighted voting‐based ensemble learning. Statistical Tests Mean accuracy, precision, specificity, and area under receiver operating characteristic curve (AUC) were obtained with 5‐fold cross‐validation. P < 0.05 was considered to be statistically significant. Results Compared with a convolutional long short‐term memory network, pre‐trained VGG‐16, VGG‐19, and DenseNet‐121 from ImageNet, M_EL and B_EL exhibited significantly more optimized prediction performance (specificity: 90.5% and 89.9%; accuracy: 82.6% and 81.1%; precision: 91.2% and 90.9%; AUC: 0.836 and 0.823, respectively). Data Conclusion Transfer learning based on unsupervised pre‐training may facilitate automatic prediction of breast cancer molecular subtypes. Level of Evidence 3 Technical Efficacy Stage 2
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
共享精神应助进击的野草采纳,获得10
刚刚
健忘丹珍完成签到,获得积分10
2秒前
勤劳悒完成签到,获得积分10
3秒前
搜集达人应助dwgwushan采纳,获得30
15秒前
ASH完成签到,获得积分10
19秒前
22秒前
个性半山完成签到 ,获得积分10
23秒前
23秒前
25秒前
25秒前
海派Hi发布了新的文献求助10
27秒前
典雅的涟妖完成签到,获得积分10
27秒前
27秒前
28秒前
28秒前
paul完成签到,获得积分10
30秒前
馍馍发布了新的文献求助10
31秒前
xudanhong发布了新的文献求助10
31秒前
Akim应助赵晨雪采纳,获得10
34秒前
天天快乐应助科研通管家采纳,获得10
35秒前
领导范儿应助科研通管家采纳,获得10
35秒前
嗯嗯应助科研通管家采纳,获得10
35秒前
35秒前
嗯嗯应助科研通管家采纳,获得10
35秒前
小蘑菇应助科研通管家采纳,获得10
35秒前
科研通AI2S应助科研通管家采纳,获得10
35秒前
嗯嗯应助科研通管家采纳,获得10
35秒前
科研通AI6应助科研通管家采纳,获得10
35秒前
在水一方应助科研通管家采纳,获得10
35秒前
35秒前
35秒前
35秒前
嗯嗯应助科研通管家采纳,获得10
35秒前
35秒前
orixero应助精明的灵珊采纳,获得10
36秒前
37秒前
小明发布了新的文献求助10
39秒前
海派Hi完成签到,获得积分10
42秒前
火星上的摩托完成签到 ,获得积分10
42秒前
44秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5680781
求助须知:如何正确求助?哪些是违规求助? 5001897
关于积分的说明 15174094
捐赠科研通 4840636
什么是DOI,文献DOI怎么找? 2594249
邀请新用户注册赠送积分活动 1547310
关于科研通互助平台的介绍 1505282