Credibility of Social-Media Content Using Bidirectional Long Short-Term Memory-Recurrent Neural Networks

循环神经网络 计算机科学 可靠性 社会化媒体 卷积神经网络 深度学习 人工智能 人工神经网络 鉴定(生物学) 钥匙(锁) 机器学习 计算机安全 万维网 政治学 植物 生物 法学
作者
Sai Parichit Akula,Nagendra Kamati
标识
DOI:10.1109/icetci51973.2021.9574061
摘要

Fake news is false information that is created, circulated and endorsed similarly as real news. Fake news and the dissemination of fake stories is nothing new to us; it has existed even before the internet was invented. But now due to social media, any person sitting at any corner of the world can create and spread fake news or rumors within minutes, which has the potential to create serious negative implications for society As a consequence, the identification of false news has arisen as a modern study field that is gaining more and more interest every day. In this article, we'll concentrate on the legitimacy of social network news. With the aid of Long ShortTerm Memory (LSTM)-recurrent neural networks, we expect to present a false news identification model. Convolutional Neural Network (CNN) and Recurrent Neural Network (RNN) are two deep neural networks that have been shown to recognizedifferent dynamic trends in textual results. The Dataset used is Fake news Detection Dataset which is publicly available by kaggle, which contains social media news articles that we have used in training our model. As compared to other deep learningstrategies such as Convolutional Neural Networks (CNNs), Gated Recurrent Units (GRU), Unidirectional Long Short- Term Memory - Recurrent neural networks, and other Bi- directional Long Short-Term Memory models, we find that ourproposed Bi-directional LSTM model outperforms in terms of accuracy and performance.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Cora发布了新的文献求助10
1秒前
1秒前
1秒前
在水一方应助快乐滑板采纳,获得10
1秒前
2秒前
啊薛薛薛完成签到,获得积分10
2秒前
舒服的灵安完成签到 ,获得积分10
3秒前
大饼卷肉发布了新的文献求助10
4秒前
hode完成签到,获得积分20
4秒前
温暖的鸿发布了新的文献求助10
4秒前
4秒前
邢夏之完成签到 ,获得积分10
5秒前
5秒前
LIUJC完成签到,获得积分10
6秒前
6秒前
6秒前
6秒前
upupup完成签到 ,获得积分10
7秒前
yiyi131完成签到,获得积分10
8秒前
cdercder应助hode采纳,获得10
9秒前
帅气鹭洋完成签到,获得积分10
9秒前
慕剑完成签到,获得积分10
9秒前
kaifeiQi完成签到,获得积分10
9秒前
zhugao完成签到,获得积分10
9秒前
曾经向卉完成签到,获得积分10
10秒前
10秒前
科研通AI2S应助kyrie采纳,获得10
10秒前
wwx发布了新的文献求助10
10秒前
10秒前
chinh完成签到,获得积分10
11秒前
阿拉蕾发布了新的文献求助10
11秒前
彭于晏应助窝窝采纳,获得10
11秒前
Dxy-TOFA完成签到,获得积分10
11秒前
威武忆山完成签到 ,获得积分10
12秒前
隐形的平萱完成签到,获得积分10
12秒前
12秒前
Martin完成签到,获得积分10
12秒前
13秒前
付尊蕴完成签到,获得积分10
13秒前
13秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
引进保护装置的分析评价八七年国外进口线路等保护运行情况介绍 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3841351
求助须知:如何正确求助?哪些是违规求助? 3383439
关于积分的说明 10529854
捐赠科研通 3103519
什么是DOI,文献DOI怎么找? 1709323
邀请新用户注册赠送积分活动 823096
科研通“疑难数据库(出版商)”最低求助积分说明 773813