已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Multilinear-Trend Fuzzy Information Granule-Based Short-Term Forecasting for Time Series

可解释性 计算机科学 数据挖掘 粒度计算 关联规则学习 多线性映射 模糊逻辑 人工智能 时间序列 机器学习 算法 数学 粗集 纯数学
作者
Fang Li,Yuqing Tang,Fusheng Yu,Witold Pedrycz,Yuming Liu,Wenyi Zeng
出处
期刊:IEEE Transactions on Fuzzy Systems [Institute of Electrical and Electronics Engineers]
卷期号:30 (8): 3360-3372 被引量:25
标识
DOI:10.1109/tfuzz.2021.3113762
摘要

Although the idea of information granulation has been shown to be a research craze in short-term time series forecasting, it is still urgent to develop a granular framework so that information granulation can characterize the trend distribution of data to the significant extent under a common concept of time. This article puts forward a novel granulation algorithm involving two-stage partitioning scheme so that information granule established there exhibits well-articulated semantics at the time level, while at the same time, it gives full consideration to the varying patterns of data. On this basis, a new association rule based on this type of information granules is presented. Unlike most fuzzy association rules, the proposed association rules can extract and derive the correlations between two collections of trend features corresponding to the past and future, which is in accord with human's reasoning. Keeping in mind that the prediction process should center on essential rules while freeing from the interference of irrelevant rules, which contributes to a reliable prediction result, thus, a rule selection algorithm is involved so as one makes sure the accuracy and interpretability of the forecasting results. The design of short-term forecasting model based on fuzzy inference system is implemented, where the concept of granulation eliminates the commonly used alternative, i.e., the recursive iterations of one-step prediction. Experimental results have verified the effectiveness of the proposed model.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
陀螺发布了新的文献求助10
1秒前
2秒前
2秒前
wackykao完成签到 ,获得积分10
2秒前
陆嫣发布了新的文献求助50
3秒前
稳重的小刺猬完成签到,获得积分10
3秒前
弓箭手完成签到 ,获得积分10
4秒前
6秒前
6秒前
炙热的渊思完成签到,获得积分10
7秒前
领导范儿应助体贴花卷采纳,获得10
7秒前
spark发布了新的文献求助10
8秒前
baijiangtao发布了新的文献求助10
9秒前
伊力扎提发布了新的文献求助10
9秒前
ANK完成签到,获得积分10
9秒前
天真元冬完成签到 ,获得积分10
11秒前
11秒前
火星上寄凡完成签到 ,获得积分10
12秒前
13秒前
WJP123关注了科研通微信公众号
15秒前
15秒前
FashionBoy应助銪志青年采纳,获得10
18秒前
18秒前
科研完成签到,获得积分10
20秒前
20秒前
lalala应助baijiangtao采纳,获得10
21秒前
草莓灰灰发布了新的文献求助10
23秒前
简单诗翠完成签到,获得积分20
24秒前
小白完成签到,获得积分10
25秒前
陀螺完成签到,获得积分10
25秒前
WJP123发布了新的文献求助10
25秒前
科研通AI5应助认真的寒香采纳,获得10
28秒前
29秒前
丘比特应助小白采纳,获得10
29秒前
八一八一完成签到,获得积分10
30秒前
喜悦荧完成签到,获得积分10
31秒前
33秒前
33秒前
好数据完成签到 ,获得积分10
35秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Voyage au bout de la révolution: de Pékin à Sochaux 700
ICDD求助cif文件 500
First Farmers: The Origins of Agricultural Societies, 2nd Edition 500
Assessment of adverse effects of Alzheimer's disease medications: Analysis of notifications to Regional Pharmacovigilance Centers in Northwest France 400
The Secrets of Successful Product Launches 300
The Rise & Fall of Classical Legal Thought 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4340929
求助须知:如何正确求助?哪些是违规求助? 3849236
关于积分的说明 12019688
捐赠科研通 3490495
什么是DOI,文献DOI怎么找? 1915606
邀请新用户注册赠送积分活动 958665
科研通“疑难数据库(出版商)”最低求助积分说明 858722