Data-driven modeling of the mechanical behavior of anisotropic soft biological tissue

忠诚 人工神经网络 有限元法 计算机科学 实验数据 背景(考古学) 计算 试验数据 应变能密度函数 应用数学 人工智能 算法 数学 工程类 结构工程 电信 生物 统计 古生物学 程序设计语言
作者
Vahidullah Taç,Vivek D. Sree,Manuel K. Rausch,Adrián Buganza Tepole
出处
期刊:Engineering With Computers [Springer Science+Business Media]
卷期号:38 (5): 4167-4182 被引量:20
标识
DOI:10.1007/s00366-022-01733-3
摘要

Closed-form constitutive models are currently the standard approach for describing soft tissues’ mechanical behavior. However, there are inherent pitfalls to this approach. For example, explicit functional forms can lead to poor fits, non-uniqueness of those fits, and exaggerated sensitivity to parameters. Here we overcome some of these problems by designing deep neural networks (DNN) to replace such explicit expert models. One challenge of using DNNs in this context is the enforcement of stress-objectivity. We meet this challenge by training our DNN to predict the strain energy and its derivatives from (pseudo)-invariants. Thereby, we can also enforce polyconvexity through physics-informed constraints on the strain-energy and its derivatives in the loss function. Direct prediction of both energy and derivative functions also enables the computation of the elasticity tensor needed for a finite element implementation. Then, we showcase the DNN’s ability by learning the anisotropic mechanical behavior of porcine and murine skin from biaxial test data. Through this example, we find that a multi-fidelity scheme that combines high fidelity experimental data with a low fidelity analytical approximation yields the best performance. Finally, we conduct finite element simulations of tissue expansion using our DNN model to illustrate the potential of data-driven approaches such as ours in medical device design. Also, we expect that the open data and software stemming from this work will broaden the use of data-driven constitutive models in soft tissue mechanics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
3秒前
3秒前
vicky完成签到,获得积分10
3秒前
4秒前
Jasper应助陈炫铭采纳,获得10
5秒前
皖医梁朝伟完成签到 ,获得积分10
6秒前
田様应助小周采纳,获得10
7秒前
Tiger发布了新的文献求助10
8秒前
zzt发布了新的文献求助10
8秒前
9秒前
小花生完成签到 ,获得积分10
9秒前
追梦完成签到 ,获得积分10
10秒前
11秒前
圣诞节完成签到,获得积分10
11秒前
单纯的又菱完成签到,获得积分10
12秒前
13秒前
阳光莲小蓬完成签到,获得积分20
13秒前
111111完成签到,获得积分10
14秒前
dzx发布了新的文献求助10
14秒前
茜茜哥哥完成签到,获得积分10
14秒前
15秒前
大模型应助manan采纳,获得10
15秒前
玲儿发布了新的文献求助10
16秒前
情怀应助奋斗的觅山采纳,获得10
16秒前
李昕123发布了新的文献求助10
17秒前
17秒前
19秒前
qingxinhuo完成签到 ,获得积分10
21秒前
22秒前
22秒前
大模型应助dzx采纳,获得10
23秒前
ShiRz发布了新的文献求助10
23秒前
24秒前
honghong1992发布了新的文献求助10
24秒前
鹿小新发布了新的文献求助10
24秒前
wishes完成签到 ,获得积分10
24秒前
25秒前
25秒前
25秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3781157
求助须知:如何正确求助?哪些是违规求助? 3326652
关于积分的说明 10227891
捐赠科研通 3041760
什么是DOI,文献DOI怎么找? 1669590
邀请新用户注册赠送积分活动 799104
科研通“疑难数据库(出版商)”最低求助积分说明 758751