Real-time detection of bursts in neuronal cultures using a neuromorphic auditory sensor and spiking neural networks

神经形态工程学 爆裂 计算机科学 Spike(软件开发) 尖峰神经网络 延迟(音频) 人工神经网络 人工智能 模式识别(心理学) 神经科学 电信 生物 软件工程
作者
Juan P. Domínguez-Morales,Stefano Buccelli,Daniel Gutiérrez-Galán,Ilaria Colombi,Ángel Jiménez-Fernández,Michela Chiappalone
出处
期刊:Neurocomputing [Elsevier BV]
卷期号:449: 422-434 被引量:4
标识
DOI:10.1016/j.neucom.2021.03.109
摘要

The correct identification of burst events is crucial in many scenarios, ranging from basic neuroscience to biomedical applications. However, none of the burst detection methods that can be found in the literature have been widely adopted for this task. As an alternative to conventional techniques, a novel neuromorphic approach for real-time burst detection is proposed and tested on acquisitions from in vitro cultures. The system consists of a Neuromorphic Auditory Sensor, which converts the input signal obtained from electrophysiological recordings into spikes and decomposes them into different frequency bands. The output of the sensor is sent to a trained Spiking Neural Network implemented on a SpiNNaker board that discerns between bursting and non-bursting activity. This data-driven approach was compared with different conventional spike-based and raw-based burst detection methods, addressing some of their drawbacks, such as being able to detect both high and low frequency events and working in an online manner. Similar results in terms of number of detected events, mean burst duration and correlation as current state-of-the-art approaches were obtained with the proposed system, also benefiting from its lower power consumption and computational latency. Therefore, our neuromorphic-based burst detection paves the road to future implementations for real-time neuroprosthetic applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
温竹攸完成签到,获得积分10
3秒前
6秒前
6秒前
lllth完成签到,获得积分10
7秒前
小浪浪发布了新的文献求助10
10秒前
HotnessK完成签到,获得积分10
16秒前
wanci应助纯情的心情采纳,获得10
18秒前
顺利毕业完成签到,获得积分10
19秒前
领导范儿应助路痴采纳,获得10
19秒前
浩二发布了新的文献求助10
21秒前
23秒前
活力听兰完成签到,获得积分10
25秒前
25秒前
25秒前
hzl发布了新的文献求助10
28秒前
雪白雪糕发布了新的文献求助10
30秒前
老陈发布了新的文献求助10
30秒前
情怀应助柯南采纳,获得10
31秒前
33秒前
可爱的函函应助Yh_alive采纳,获得10
34秒前
倪妮发布了新的文献求助20
35秒前
科研通AI5应助呼呼呼采纳,获得10
36秒前
37秒前
雪白雪糕完成签到,获得积分10
38秒前
科研通AI5应助天天向上采纳,获得30
38秒前
儒雅沛凝完成签到 ,获得积分10
40秒前
41秒前
41秒前
41秒前
LJYii发布了新的文献求助10
42秒前
黑摄会阿Fay完成签到 ,获得积分10
42秒前
42秒前
pluto应助尤静柏采纳,获得10
43秒前
44秒前
Yh_alive发布了新的文献求助10
45秒前
ztayx完成签到 ,获得积分10
46秒前
路痴发布了新的文献求助10
46秒前
Li发布了新的文献求助10
47秒前
49秒前
49秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Encyclopedia of Geology (2nd Edition) 2000
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780043
求助须知:如何正确求助?哪些是违规求助? 3325422
关于积分的说明 10222930
捐赠科研通 3040579
什么是DOI,文献DOI怎么找? 1668903
邀请新用户注册赠送积分活动 798857
科研通“疑难数据库(出版商)”最低求助积分说明 758614