Combustion performance of fine screenings from municipal solid waste: Thermo-kinetic investigation and deep learning modeling via TG-FTIR

热重分析 燃烧 吉布斯自由能 热力学 动能 材料科学 城市固体废物 化学 废物管理 物理化学 物理 有机化学 工程类 量子力学
作者
Lu Tian,Kunsen Lin,Youcai Zhao,Chunlong Zhao,Qifei Huang,Tao Zhou
出处
期刊:Energy [Elsevier BV]
卷期号:243: 122783-122783 被引量:18
标识
DOI:10.1016/j.energy.2021.122783
摘要

Abstract The combustion behavior, kinetics, thermodynamics and gas products of fine screenings (FS) classified from municipal solid waste (MSW) in an air atmosphere were explored by TG-FTIR. A deep learning model was established using 1D–CNN–LSTM algorithm to predict thermogravimetric data of FS combustion, with visualization technology (TensorBoard) applied to display the weights and biases in various cells. The thermogravimetric analysis (TG) and differential thermal gravity (DTG) curves indicated that the FS combustion process can be divided into four stages. The average activation energy (Ea) of FS combusted at different stages, exhibited different change tendencies with increasing levels of conversion (α). The highest enthalpy (ΔH) of 206.40 KJ/mol and free Gibbs energy (ΔG) of 55.03 KJ/mol emerged in stage Ⅳ, while the highest changes of entropy (ΔS) of 169.11 J/(mol·K) occurred in stage Ⅱ. The main gas products (CO2, H2O and CO) and functional groups (C O and phenols) were all detected. For the 1D–CNN–LSTM model, the optimal settings for the prediction of thermogravimetric data were a neuron number of 150, dropout of 0.003, epoch number of 200, and batch size of 25. The highest correlation coefficient (R2) of 94.41% was obtained using the optimum model parameters, achieving an excellent prediction performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
昏睡的蟠桃应助阿希塔采纳,获得200
刚刚
1秒前
1秒前
1秒前
酷波er应助犹豫的硬币采纳,获得10
1秒前
王夹心饼干完成签到,获得积分10
1秒前
1秒前
雨雨发布了新的文献求助10
2秒前
ZhouYW应助飞羽采纳,获得10
2秒前
隐形曼青应助飞羽采纳,获得10
2秒前
露卡完成签到,获得积分10
2秒前
3秒前
3秒前
羊羊羊发布了新的文献求助20
3秒前
乐观德地完成签到,获得积分10
3秒前
xx完成签到 ,获得积分10
4秒前
能干芙完成签到,获得积分10
4秒前
情怀应助sunshine采纳,获得10
5秒前
科研通AI5应助聪明的戒指采纳,获得10
5秒前
5秒前
快乐小霉发布了新的文献求助10
5秒前
123完成签到,获得积分10
5秒前
专注的糖豆完成签到,获得积分10
6秒前
nnbn发布了新的文献求助10
6秒前
holycale发布了新的文献求助30
6秒前
蛋蛋发布了新的文献求助10
6秒前
7秒前
蕯匿完成签到,获得积分10
7秒前
ahsisalah完成签到,获得积分10
7秒前
7秒前
8秒前
欧耶欧椰完成签到 ,获得积分10
8秒前
卢浩发布了新的文献求助20
8秒前
道为完成签到,获得积分10
8秒前
酷波er应助CC采纳,获得10
9秒前
映泧完成签到,获得积分10
9秒前
10秒前
成就的心情完成签到,获得积分10
10秒前
所所应助鲤鱼绿旋采纳,获得10
10秒前
ivying0209完成签到,获得积分10
10秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3792971
求助须知:如何正确求助?哪些是违规求助? 3337641
关于积分的说明 10286083
捐赠科研通 3054212
什么是DOI,文献DOI怎么找? 1675888
邀请新用户注册赠送积分活动 803875
科研通“疑难数据库(出版商)”最低求助积分说明 761578