热重分析
燃烧
吉布斯自由能
焓
热力学
动能
材料科学
城市固体废物
化学
废物管理
物理化学
物理
有机化学
工程类
量子力学
作者
Lu Tian,Kunsen Lin,Youcai Zhao,Chunlong Zhao,Qifei Huang,Tao Zhou
出处
期刊:Energy
[Elsevier BV]
日期:2021-11-29
卷期号:243: 122783-122783
被引量:18
标识
DOI:10.1016/j.energy.2021.122783
摘要
Abstract The combustion behavior, kinetics, thermodynamics and gas products of fine screenings (FS) classified from municipal solid waste (MSW) in an air atmosphere were explored by TG-FTIR. A deep learning model was established using 1D–CNN–LSTM algorithm to predict thermogravimetric data of FS combustion, with visualization technology (TensorBoard) applied to display the weights and biases in various cells. The thermogravimetric analysis (TG) and differential thermal gravity (DTG) curves indicated that the FS combustion process can be divided into four stages. The average activation energy (Ea) of FS combusted at different stages, exhibited different change tendencies with increasing levels of conversion (α). The highest enthalpy (ΔH) of 206.40 KJ/mol and free Gibbs energy (ΔG) of 55.03 KJ/mol emerged in stage Ⅳ, while the highest changes of entropy (ΔS) of 169.11 J/(mol·K) occurred in stage Ⅱ. The main gas products (CO2, H2O and CO) and functional groups (C O and phenols) were all detected. For the 1D–CNN–LSTM model, the optimal settings for the prediction of thermogravimetric data were a neuron number of 150, dropout of 0.003, epoch number of 200, and batch size of 25. The highest correlation coefficient (R2) of 94.41% was obtained using the optimum model parameters, achieving an excellent prediction performance.
科研通智能强力驱动
Strongly Powered by AbleSci AI