A systematic literature review of deep learning neural network for time series air quality forecasting

深度学习 人工智能 机器学习 空气质量指数 计算机科学 可解释性 人工神经网络 质量(理念) 认识论 物理 哲学 气象学
作者
Nur’atiah Zaini,Lee Woen Ean,Ali Najah Ahmed,Marlinda Abdul Malek
出处
期刊:Environmental Science and Pollution Research [Springer Science+Business Media]
卷期号:29 (4): 4958-4990 被引量:75
标识
DOI:10.1007/s11356-021-17442-1
摘要

Rapid progress of industrial development, urbanization and traffic has caused air quality reduction that negatively affects human health and environmental sustainability, especially among developed countries. Numerous studies on the development of air quality forecasting model using machine learning have been conducted to control air pollution. As such, there are significant numbers of reviews on the application of machine learning in air quality forecasting. Shallow architectures of machine learning exhibit several limitations and yield lower forecasting accuracy than deep learning architecture. Deep learning is a new technology in computational intelligence; thus, its application in air quality forecasting is still limited. This study aims to investigate the deep learning applications in time series air quality forecasting. Owing to this, literature search is conducted thoroughly from all scientific databases to avoid unnecessary clutter. This study summarizes and discusses different types of deep learning algorithms applied in air quality forecasting, including the theoretical backgrounds, hyperparameters, applications and limitations. Hybrid deep learning with data decomposition, optimization algorithm and spatiotemporal models are also presented to highlight those techniques' effectiveness in tackling the drawbacks of individual deep learning models. It is clearly stated that hybrid deep learning was able to forecast future air quality with higher accuracy than individual models. At the end of the study, some possible research directions are suggested for future model development. The main objective of this review study is to provide a comprehensive literature summary of deep learning applications in time series air quality forecasting that may benefit interested researchers for subsequent research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无一完成签到 ,获得积分0
1秒前
丘比特应助YY采纳,获得50
4秒前
张倩完成签到,获得积分10
8秒前
ntrip完成签到,获得积分10
9秒前
蓝色花生豆完成签到,获得积分10
10秒前
科研通AI2S应助Loik采纳,获得10
11秒前
13秒前
YY完成签到,获得积分10
15秒前
Loik完成签到,获得积分20
17秒前
长长的名字完成签到 ,获得积分10
18秒前
YY发布了新的文献求助50
19秒前
阳光的凡阳完成签到 ,获得积分10
24秒前
Amy完成签到 ,获得积分10
26秒前
时2完成签到,获得积分10
29秒前
32秒前
zyc完成签到 ,获得积分10
38秒前
友好的冥王星完成签到,获得积分10
39秒前
蒙开心完成签到 ,获得积分10
40秒前
MrChew完成签到 ,获得积分10
41秒前
46秒前
她的城完成签到,获得积分0
52秒前
喵喵完成签到 ,获得积分10
54秒前
54秒前
青海盐湖所李阳阳完成签到 ,获得积分10
55秒前
黄花完成签到 ,获得积分10
56秒前
huanir99发布了新的文献求助10
59秒前
mengmenglv完成签到 ,获得积分0
1分钟前
1分钟前
Ander完成签到 ,获得积分10
1分钟前
cici完成签到 ,获得积分10
1分钟前
小人物完成签到,获得积分10
1分钟前
琦qi完成签到 ,获得积分10
1分钟前
谦让成协完成签到,获得积分10
1分钟前
gzf213完成签到,获得积分10
1分钟前
1分钟前
HEIKU应助端庄洪纲采纳,获得10
1分钟前
追寻的续完成签到 ,获得积分10
1分钟前
平淡尔琴完成签到,获得积分10
1分钟前
卫卫完成签到 ,获得积分10
1分钟前
xuan完成签到,获得积分10
1分钟前
高分求助中
中华人民共和国出版史料(1954)第6卷 1000
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Handbook of Experimental Social Psychology 500
The Martian climate revisited: atmosphere and environment of a desert planet 500
建国初期十七年翻译活动的实证研究. 建国初期十七年翻译活动的实证研究 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3845648
求助须知:如何正确求助?哪些是违规求助? 3387867
关于积分的说明 10550752
捐赠科研通 3108492
什么是DOI,文献DOI怎么找? 1712872
邀请新用户注册赠送积分活动 824532
科研通“疑难数据库(出版商)”最低求助积分说明 774877