不良事件通用术语标准
放射性核素治疗
医学
实体瘤疗效评价标准
骨闪烁照相术
不利影响
剂量学
放射性配体
PET-CT
四分位间距
内科学
核医学
临床研究阶段
毒性
正电子发射断层摄影术
受体
作者
Justin Ferdinandus,Pedro Fragoso Costa,Lukas Kessler,Manuel Weber,Nader Hirmas,Karina Kostbade,Sebastian Bauer,Martin Schüler,Marit Ahrens,Hans‐Ulrich Schildhaus,Christoph Rischpler,Hong Grafe,Jens T. Siveke,Ken Herrmann,Wolfgang P. Fendler,Rainer Hamacher
标识
DOI:10.2967/jnumed.121.262468
摘要
Fibroblast activation protein (FAP) is overexpressed in several solid tumors and therefore represents an attractive target for radiotheranostic applications. Recent investigations demonstrated rapid and high uptake of small-molecule inhibitors of FAP (68Ga-FAPI-46) for PET imaging. Here, we report our initial experience of the feasibility and safety of 90Y-FAPI-46 for radioligand therapy of extensively pretreated patients with solid tumors. Methods: Patients were considered for 90Y-FAPI-46 therapy if they showed both an exhaustion of all approved therapies based on multidisciplinary tumor board decision, and high FAP expression, defined as SUVmax greater than or equal to 10 in more than 50% of all lesions. If tolerated, 90Y-FAPI-46 bremsstrahlung scintigraphy was performed after therapy to confirm systemic distribution and focal tumor uptake, and 90Y-FAPI-46 PET scans were performed at multiple time points to determine absorbed dose. Blood-based dosimetry was used to determine bone marrow absorbed dose. Adverse events were graded using Common Terminology Criteria for Adverse Events (version 5.0). Results: Nine patients either with metastatic soft-tissue or bone sarcoma (n = 6) or with pancreatic cancer (n = 3) were treated between June 2020 and March 2021. Patients received a median of 3.8 GBq (interquartile range [IQR], 3.25-5.40 GBq) for the first cycle, and 3 patients received subsequent cycles with a median of 7.4 GBq (IQR, 7.3-7.5 GBq). Posttreatment 90Y-FAPI-46 bremsstrahlung scintigraphy demonstrated sufficient 90Y-FAPI-46 uptake in tumor lesions in 7 of 9 patients (78%). Mean absorbed dose was 0.52 Gy/GBq (IQR, 0.41-0.65 Gy/GBq) in the kidney, 0.04 Gy/GBq (IQR, 0.03-0.06 Gy/GBq) in bone marrow, and less than 0.26 Gy/GBq in the lung and liver. Measured tumor lesions received up to 2.28 Gy/GBq (median, 1.28 Gy/GBq). New laboratory G3 or G4 toxicities were noted in 4 patients (44%, n = 2 patients with thrombocytopenia only, n = 2 patients with new onset of thrombocytopenia and anemia). Other G3 or G4 laboratory-based adverse events occurred in 2 patients or fewer. No acute toxicities attributed to 90Y-FAPI-46 were noted. Radiographic disease control was noted in 4 patients (50%). Conclusion: FAP-targeted radioligand therapy with 90Y-FAPI-46 was well tolerated, with a low rate of attributable adverse events. Low radiation doses to at-risk organs suggest feasibility of repeat cycles of 90Y-FAPI-46. We observed signs of tumor response, but further studies are warranted to determine efficacy and the toxicity profile in a larger cohort.
科研通智能强力驱动
Strongly Powered by AbleSci AI