Outlier-Robust Matrix Completion via $\ell _p$ -Minimization

离群值 基质(化学分析) 秩(图论) 计算机科学 算法 组合数学 人工智能 数学 材料科学 复合材料
作者
Wen-Jun Zeng,Hing Cheung So
出处
期刊:IEEE Transactions on Signal Processing [Institute of Electrical and Electronics Engineers]
卷期号:66 (5): 1125-1140 被引量:78
标识
DOI:10.1109/tsp.2017.2784361
摘要

Matrix completion refers to recovering a low-rank matrix from only a subset of its possibly noisy entries, and has a variety of important applications because many real-world signals can be modeled by a n 1 × n 2 matrix with rank r ≪ min(n 1 , n 2 ). Most existing techniques for matrix completion assume Gaussian noise and, thus, they are not robust to outliers. In this paper, we devise two algorithms for robust matrix completion based on low-rank matrix factorization and ℓ p -norm minimization of the fitting error with 0 <; p <; 2. The first method tackles the low-rank matrix factorization with missing data by iteratively solving (n 1 + n 2 ) linear ℓ p -regression problems, whereas the second applies the alternating direction method of multipliers (ADMM) in the ℓ p -space. At each iteration of the ADMM, it requires performing a least squares (LS) matrix factorization and calculating the proximity operator of the pth power of the ℓ p -norm. The LS factorization is efficiently solved using linear LS regression while the proximity operator has closed-form solution for p = 1 or can be obtained by root finding of a scalar nonlinear equation for other values of p. The two proposed algorithms have comparable recovery capability and computational complexity of O(K|Ω|r 2 ), where |Ω| is the number of observed entries and K is a fixed constant of several hundreds to thousands and dimension independent. It is demonstrated that they are superior to the singular value thresholding, singular value projection, and alternating projection schemes in terms of computational simplicity, statistical accuracy, and outlier-robustness.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
天真松鼠完成签到,获得积分10
刚刚
领导范儿应助占听兰采纳,获得10
1秒前
Jasper应助LLLnna采纳,获得10
1秒前
G.Yee发布了新的文献求助10
1秒前
现实世界npc完成签到 ,获得积分10
1秒前
Aixia完成签到,获得积分10
2秒前
orange完成签到,获得积分10
2秒前
心木完成签到 ,获得积分10
2秒前
无恙发布了新的文献求助10
3秒前
4秒前
香蕉觅云应助柒月小鱼采纳,获得10
4秒前
5秒前
文艺的枫叶完成签到 ,获得积分10
5秒前
浮雨微清完成签到,获得积分10
5秒前
leo发布了新的文献求助10
6秒前
JinlongFan完成签到 ,获得积分10
6秒前
6秒前
搜集达人应助ll采纳,获得10
6秒前
7秒前
8秒前
Orange应助bobo采纳,获得10
8秒前
lwroche完成签到,获得积分10
8秒前
冰魂应助呱呱采纳,获得10
9秒前
苗苗苗苗发布了新的文献求助10
9秒前
大个应助维时采纳,获得10
9秒前
默默的冰棍完成签到,获得积分10
10秒前
止影子完成签到,获得积分20
11秒前
11秒前
miemiemie94发布了新的文献求助10
11秒前
12秒前
魏笑白发布了新的文献求助30
12秒前
枫泾完成签到,获得积分10
12秒前
Billy给echo的求助进行了留言
12秒前
leo完成签到,获得积分10
12秒前
小刘发布了新的文献求助20
13秒前
13秒前
soar完成签到 ,获得积分10
13秒前
CipherSage应助liyuanhao采纳,获得10
13秒前
怡然万声发布了新的文献求助10
14秒前
科研通AI5应助Akong采纳,获得10
14秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Pharmacological profile of sulodexide 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3804725
求助须知:如何正确求助?哪些是违规求助? 3349592
关于积分的说明 10345510
捐赠科研通 3065684
什么是DOI,文献DOI怎么找? 1683244
邀请新用户注册赠送积分活动 808762
科研通“疑难数据库(出版商)”最低求助积分说明 764734