亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Thermal Conductivity of Metallic Uranium

热导率 材料科学 热力学 从头算 合金 冶金 化学 复合材料 物理 有机化学
作者
Céline Hin
标识
DOI:10.2172/1433931
摘要

This project has developed a modeling and simulation approaches to predict the thermal conductivity of metallic fuels and their alloys. We focus on two methods. The first method has been developed by the team at the University of Wisconsin Madison. They developed a practical and general modeling approach for thermal conductivity of metals and metal alloys that integrates ab-initio and semi-empirical physics-based models to maximize the strengths of both techniques. The second method has been developed by the team at Virginia Tech. This approach consists of a determining the thermal conductivity using only ab-initio methods without any fitting parameters. Both methods were complementary. The models incorporated both phonon and electron contributions. Good agreement with experimental data over a wide temperature range were found. The models also provided insight into the different physical factors that govern the thermal conductivity under different temperatures. The models were general enough to incorporate more complex effects like additional alloying species, defects, transmutation products and noble gas bubbles to predict the behavior of complex metallic alloys like U-alloy fuel systems under burnup. 3 Introduction Thermal conductivity is an important thermal physical property affecting the performance and efficiency of metallic fuels. Some experimental measurement of thermal conductivity and its correlation with composition and temperature from empirical fitting are available for U, Zr and their alloys with Pu and other minor actinides. However, as reviewed in by Kim, Cho and Sohn, due to the difficulty in doing experiments on actinide materials, thermal conductivities of metallic fuels have only been measured at limited alloy compositions and temperatures, some of them even being negative and unphysical. Furthermore, the correlations developed so far are empirical in nature and may not be accurate when used for prediction at conditions far from those used in the original fitting. Moreover, as fuels burn up in the reactor and fission products are built up, thermal conductivity is also significantly changed. Unfortunately, fundamental understanding of the effect of fission products is also currently lacking. In this project, we probe thermal conductivity of metallic fuels with ab initio calculations, a theoretical tool with the potential to yield better accuracy and predictive power than empirical fitting. This work will both complement experimental data by determining thermal conductivity in wider composition and temperature ranges than is available experimentally, and also develop mechanistic understanding to guide better design of metallic fuels in the future. So far, we focused on α-U perfect crystal, the ground-state phase of U metal. We focus on two methods. The first method has been developed by the team at the University of Wisconsin Madison. They developed a practical and general modeling approach for thermal conductivity of metals and metal alloys that integrates ab-initio and semi-empirical physics-based models to maximize the strengths of both techniques. The second method has been developed by the team at Virginia Tech. This approach consists of a determining the thermal conductivity using only ab-initio methods without any fitting parameters. Both methods were complementary and very helpful to understand the physics behind the thermal conductivity in metallic uranium and other materials with similar characteristics. In Section I, the combined model developed at UWM is explained. In Section II, the ab-initio method developed at VT is described along with the uranium pseudo-potential and its validation. Section III is devoted to the work done by Jianguo Yu at INL. Finally, we will present the performance of the project in terms of milestones, publications, and presentations.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
呆萌的不可完成签到,获得积分20
2秒前
3秒前
逐影完成签到,获得积分20
8秒前
福星高照完成签到,获得积分10
17秒前
忐忑的阑香完成签到,获得积分10
24秒前
30秒前
30秒前
32秒前
我是老大应助Cedric采纳,获得10
33秒前
35秒前
辉辉应助科研通管家采纳,获得10
37秒前
Criminology34应助科研通管家采纳,获得10
37秒前
Criminology34应助科研通管家采纳,获得10
37秒前
centlay发布了新的文献求助10
41秒前
44秒前
Cedric发布了新的文献求助10
51秒前
1分钟前
1分钟前
1分钟前
1分钟前
Ranran发布了新的文献求助30
1分钟前
张杰列夫完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
魔幻的芳完成签到,获得积分10
1分钟前
1分钟前
火星上的宝马完成签到,获得积分10
1分钟前
悲凉的忆南完成签到,获得积分10
1分钟前
QQ完成签到 ,获得积分10
2分钟前
上官若男应助福星高照采纳,获得10
2分钟前
陈旧完成签到,获得积分10
2分钟前
2分钟前
欣欣子完成签到,获得积分10
2分钟前
sunstar完成签到,获得积分10
2分钟前
2分钟前
yxl完成签到,获得积分10
2分钟前
苗条的一一完成签到,获得积分10
2分钟前
可耐的盈完成签到,获得积分10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 500
Terminologia Embryologica 500
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5617034
求助须知:如何正确求助?哪些是违规求助? 4701438
关于积分的说明 14913668
捐赠科研通 4748734
什么是DOI,文献DOI怎么找? 2549278
邀请新用户注册赠送积分活动 1512335
关于科研通互助平台的介绍 1474080