亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Unsupervised pathology image segmentation using representation learning with spherical k-means

作者
Takayasu Moriya,Holger R. Roth,Shota Nakamura,Hirohisa Oda,Kai Nagara,Masahiro Oda,Kensaku Mori,Takayasu Moriya,Holger R. Roth,Shota Nakamura,Hirohisa Oda,Kai Nagara,Masahiro Oda,Kensaku Mori
标识
DOI:10.1117/12.2292172
摘要

This paper presents a novel method for unsupervised segmentation of pathology images. Staging of lung cancer is a major factor of prognosis. Measuring the maximum dimensions of the invasive component in a pathology images is an essential task. Therefore, image segmentation methods for visualizing the extent of invasive and noninvasive components on pathology images could support pathological examination. However, it is challenging for most of the recent segmentation methods that rely on supervised learning to cope with unlabeled pathology images. In this paper, we propose a unified approach to unsupervised representation learning and clustering for pathology image segmentation. Our method consists of two phases. In the first phase, we learn feature representations of training patches from a target image using the spherical k-means. The purpose of this phase is to obtain cluster centroids which could be used as filters for feature extraction. In the second phase, we apply conventional k-means to the representations extracted by the centroids and then project cluster labels to the target images. We evaluated our methods on pathology images of lung cancer specimen. Our experiments showed that the proposed method outperforms traditional k-means segmentation and the multithreshold Otsu method both quantitatively and qualitatively with an improved normalized mutual information (NMI) score of 0.626 compared to 0.168 and 0.167, respectively. Furthermore, we found that the centroids can be applied to the segmentation of other slices from the same sample.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
du完成签到,获得积分10
1秒前
1秒前
6秒前
13秒前
可爱的函函应助crane采纳,获得10
16秒前
16秒前
AAA发布了新的文献求助10
20秒前
王威发布了新的文献求助10
21秒前
uery完成签到,获得积分10
24秒前
池雨完成签到 ,获得积分10
26秒前
JamesPei应助18878732126采纳,获得100
26秒前
Marciu33发布了新的文献求助10
36秒前
39秒前
45秒前
48秒前
zzzz发布了新的文献求助10
53秒前
58秒前
Hello应助zzzz采纳,获得10
1分钟前
1分钟前
ANG完成签到 ,获得积分10
1分钟前
捏捏发布了新的文献求助10
1分钟前
1分钟前
allen完成签到,获得积分10
1分钟前
养乐多发布了新的文献求助10
1分钟前
斯文败类应助养乐多采纳,获得10
1分钟前
仰勒完成签到 ,获得积分10
1分钟前
wxq驳回了pluto应助
1分钟前
RZJH完成签到 ,获得积分10
1分钟前
小二郎应助捏捏采纳,获得10
1分钟前
刻苦小鸭子完成签到,获得积分10
1分钟前
龙弟弟完成签到 ,获得积分10
1分钟前
一这那西应助科研通管家采纳,获得10
1分钟前
慕青应助科研通管家采纳,获得30
1分钟前
养乐多完成签到,获得积分20
1分钟前
今后应助qiuzhiqi采纳,获得10
1分钟前
勋章完成签到 ,获得积分10
1分钟前
1分钟前
2分钟前
2分钟前
辞却发布了新的文献求助10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Washback Research in Language Assessment:Fundamentals and Contexts 400
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5469949
求助须知:如何正确求助?哪些是违规求助? 4572951
关于积分的说明 14337741
捐赠科研通 4499833
什么是DOI,文献DOI怎么找? 2465389
邀请新用户注册赠送积分活动 1453763
关于科研通互助平台的介绍 1428323