High Capacity and Stability Lithium Metal Anode for Ultra-High Energy Density and High Safety Lithium Metal Batteries

阳极 电解质 金属锂 锂(药物) 电池(电) 材料科学 枝晶(数学) 锂电池 化学工程 电化学 纳米技术 化学 电极 有机化学 离子键合 离子 工程类 功率(物理) 物理化学 内分泌学 物理 医学 量子力学 数学 几何学
作者
Wei-Hsin Wu,Chih‐Ching Chang,Shian-Hau Chiou,Chung-Hsiang Chao,Sheng-Hui Wu,Jason Fang
出处
期刊:Meeting abstracts 卷期号:MA2017-02 (5): 480-480
标识
DOI:10.1149/ma2017-02/5/480
摘要

The advantages of lithium-metal batteries (i.e., a higher energy density and a smaller size) have existed for decades. However, these batteries have been so far non-rechargeable and have been known to burst into flame. These two characteristics stem from the reaction which takes place between the lithium metal and the battery’s electrolyte. This reaction not only produces compounds which increase the resistance in the battery and reduce the cycle life, but also forms mossy lithium-metal bumps on the anode which leads to short circuits. A short circuit generates high heat and ignites the flammable electrolyte. The current approach to prevent from lithium dendrite formation on anode is simply divided into four aspects: 1). Electrolyte with additives; 2). Functional artificial SEI modification (FASEI); 3). Lithium physical morphology and 4). Current collector. All these the state-of-the-art approaches must well coordinate with each other so that at least having a chance to improve both cell efficiency and suppressing dendrite after long cycling. In other words, neither side can completely solve the problems of lithium metal battery. The strategies must be comprehensive and well designed. (ie. an integrated safety materials and compact cell design should take into consideration as well). First is from electrolyte with additives controlled, second is ex-situ SEI formation by polymer film or inorganic species, third is from the lithium bulk surface morphology or lithium physical shape. However, these technology or scientific innovations had been restricted anyway due to the following reasons: 1. Solvent reduction species are often prominent for reactive solvents (carbonates or ethers). 2. Anion reactions can be more influential when more stable solvents (ether type) are present. 3. The electrolyte salt concentration can have a major impact on the CE (coulomb efficiency) for highly concentrated electrolytes, but this is strongly influenced by the solvent and Li salt employed. 4. The replacement of aprotic solvents with ILs reduces, but does not fully prevent, formation of Li dendrite. 5. Block copolymer electrolytes do hinder dendrite infiltration. They do not ultimately prevent SC. of cells due to dendrites. This is also the case for solid inorganic (crystalline or glassy) separators. 6. The substrate on which the Li is plated is a significant factor governing the deposition. 7. Substrate surface roughness (pits, ridge lines, etc.) also dramatically affects where and how Li deposits. 8. Alloy formation further complicates the interpretation of the electrochemical redox reactions occurring. 9. Pressure generally results in less dead Li due to better electrical contact within the deposited lithium as well as results in superior plating/stripping behavior due to both lower side reaction rates. Last but not least, there is no way that either of above mention can act as one antidote for lithium dendrite, but being a trade-offs instead. Eventually, a well distribution electro field with homogeneous lithium surface and stable SEI having good ion conversion efficiency are both the keystone to the lithium anode preventing from dendrite formation and poor coulomb efficiency. Figure 1

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李健应助科研通管家采纳,获得10
刚刚
白紫寒完成签到,获得积分10
刚刚
msy完成签到,获得积分20
刚刚
1秒前
靓仔要亮发布了新的文献求助10
1秒前
我的南方发布了新的文献求助10
1秒前
jia发布了新的文献求助10
1秒前
Eternal芾夏发布了新的文献求助10
2秒前
哈哈哈发布了新的文献求助10
2秒前
2秒前
BakedMax完成签到,获得积分10
4秒前
4秒前
扶余山本完成签到,获得积分10
5秒前
6秒前
陈椅子的求学完成签到,获得积分10
7秒前
8秒前
8秒前
8秒前
香蕉觅云应助愤怒的卓越采纳,获得10
9秒前
9秒前
个股发布了新的文献求助10
9秒前
Jasper应助平常的胡萝卜采纳,获得20
9秒前
9秒前
yan完成签到,获得积分10
9秒前
小两完成签到,获得积分10
10秒前
10秒前
ydb123完成签到,获得积分10
10秒前
光明磊落发布了新的文献求助10
11秒前
打打应助yu采纳,获得10
11秒前
12秒前
Shanshan完成签到,获得积分10
13秒前
调皮凡英发布了新的文献求助10
13秒前
Pucky发布了新的文献求助10
13秒前
13秒前
青石发布了新的文献求助10
14秒前
Aoia发布了新的文献求助30
14秒前
fanjinhua完成签到,获得积分10
15秒前
Hello应助光明磊落采纳,获得10
15秒前
hjy发布了新的文献求助10
15秒前
15秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Experimental Design for the Life Sciences 200
Semiconductor Wafer Bonding: Science Technology, and Applications VI 200
Parallel Optimization 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3835735
求助须知:如何正确求助?哪些是违规求助? 3378088
关于积分的说明 10502218
捐赠科研通 3097678
什么是DOI,文献DOI怎么找? 1705955
邀请新用户注册赠送积分活动 820760
科研通“疑难数据库(出版商)”最低求助积分说明 772274