Support Vector Machine-Based Rapid Magnitude Estimation Using Transfer Learning for the Sichuan–Yunnan Region, China

震级(天文学) 航程(航空) 传输(计算) 支持向量机 地震震级 学习迁移 估计 绝对震级 标准差 强度(物理) 统计 大地测量学 数学 计算机科学 地质学 人工智能 物理 几何学 工程类 光学 天体物理学 计算机视觉 航空航天工程 星星 并行计算 系统工程 缩放比例
作者
Jingbao Zhu,Shanyou Li,Qiang Ma,Bin He,Jin Dong Song
出处
期刊:Bulletin of the Seismological Society of America [Seismological Society of America]
卷期号:112 (2): 894-904 被引量:3
标识
DOI:10.1785/0120210232
摘要

ABSTRACT The Sichuan–Yunnan region is a seismically active area. To explore the feasibility of using the support vector machine (SVM) method for magnitude estimation in the area and to improve the rapid magnitude estimation accuracy, we construct an SVM magnitude estimation model using transfer learning (TLSVM-M model) based on a single-station record in this study. We find that the magnitude estimation of a single station shows that for the test dataset, within the 3 s time window after the P-wave arrival, the average absolute error (which reflects the size of the estimated magnitude error as a whole) and standard deviation (which reflects the scatter of magnitude estimation error) of the magnitudes estimated by the TLSVM-M model are 0.31 and 0.41, respectively, which are less than those of the SVM magnitude estimation model without transfer learning (0.44 and 0.55, respectively), the τc method (1.35 and 1.74, respectively) and the Pd method (0.44 and 0.56, respectively). In addition, in test involving five earthquake events via the TLSVM-M model, at 1 s after the first station is triggered, the magnitudes of three events (Ms 4.2, 5.2, and 6.3) are estimated within an error range of ±0.3 magnitude units. For the other two earthquakes (Ms 6.6 and 7.0), there is an obvious magnitude underestimation problem at 1 s after the first station is triggered, with less underestimation by increasing time after the first station is triggered. Meanwhile, for these two events (Ms 6.6 and 7.0), within 13 s after the first station was triggered, the magnitude estimation errors are both within ±0.3 magnitude units. The TLSVM-M model has the capability of rapid magnitude estimation for small-to-moderate events in the Sichuan–Yunnan region. Meanwhile, we infer that the proposed model may have potential in earthquake early warning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
pluto应助哎呀妈呀采纳,获得10
刚刚
乐乐应助哈哈哈采纳,获得10
刚刚
1秒前
水尽云生处应助nanfeng采纳,获得10
1秒前
量子星尘发布了新的文献求助10
2秒前
萝卜啃菠萝完成签到,获得积分10
2秒前
华仔应助目分采纳,获得10
2秒前
LR发布了新的文献求助10
2秒前
端庄的火龙果完成签到,获得积分10
3秒前
wh发布了新的文献求助10
4秒前
ding应助笑点低的不采纳,获得10
5秒前
5秒前
阿乾发布了新的文献求助10
5秒前
汉堡包应助活泼的傲薇采纳,获得10
6秒前
是蜡笔小欣啊完成签到,获得积分10
6秒前
7秒前
7秒前
8秒前
8秒前
叁拾肆完成签到 ,获得积分10
8秒前
9秒前
大男完成签到,获得积分10
10秒前
何雨鑫完成签到,获得积分10
10秒前
11秒前
11秒前
充电宝应助ss采纳,获得10
12秒前
皮卡丘完成签到,获得积分10
13秒前
594zqz完成签到,获得积分10
14秒前
从容中恶完成签到,获得积分20
16秒前
16秒前
烟花应助ciky采纳,获得10
16秒前
wh完成签到,获得积分10
17秒前
gentleman完成签到,获得积分10
17秒前
Jean_Zhao完成签到 ,获得积分10
17秒前
17秒前
18秒前
爱吃糖葫芦完成签到,获得积分20
19秒前
彼得大帝完成签到,获得积分10
19秒前
20秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Materials Selection in Mechanical Design 1000
Voyage au bout de la révolution: de Pékin à Sochaux 700
First Farmers: The Origins of Agricultural Societies, 2nd Edition 500
Simulation of High-NA EUV Lithography 400
Metals, Minerals, and Society 400
International socialism & Australian labour : the Left in Australia, 1919-1939 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4309300
求助须知:如何正确求助?哪些是违规求助? 3831124
关于积分的说明 11987104
捐赠科研通 3471176
什么是DOI,文献DOI怎么找? 1903301
邀请新用户注册赠送积分活动 950577
科研通“疑难数据库(出版商)”最低求助积分说明 852463