Multiplexed Identification of Bacterial Biofilm Infections Based on Machine-Learning-Aided Lanthanide Encoding

生物膜 多路复用 微生物学 表面蛋白 表面电荷 鉴定(生物学) 纳米技术 材料科学 化学 生物 细菌 生物信息学 病毒学 遗传学 植物 物理化学
作者
Jie Wang,Zhuoran Jiang,Yong Wei,Wenjie Wang,Fubing Wang,Yanbing Yang,Heng Song,Quan Yuan
出处
期刊:ACS Nano [American Chemical Society]
卷期号:16 (2): 3300-3310 被引量:35
标识
DOI:10.1021/acsnano.1c11333
摘要

Pathogenic biofilms are up to 1000-fold more drug-resistant than planktonic pathogens and cause about 80% of all chronic infections worldwide. The lack of prompt and reliable biofilm identification methods seriously prohibits the diagnosis and treatment of biofilm infections. Here, we developed a machine-learning-aided cocktail assay for prompt and reliable biofilm detection. Lanthanide nanoparticles with different emissions, surface charges, and hydrophilicity are formulated into the cocktail kits. The lanthanide nanoparticles in the cocktail kits can offer competitive interactions with the biofilm and further maximize the charge and hydrophilicity differences between biofilms. The physicochemical heterogeneities of biofilms were transformed into luminescence intensity at different wavelengths by the cocktail kits. The luminescence signals were used as learning data to train the random forest algorithm, and the algorithm could identify the unknown biofilms within minutes after training. Electrostatic attractions and hydrophobic-hydrophobic interactions were demonstrated to dominate the binding of the cocktail kits to the biofilms. By rationally designing the charge and hydrophilicity of the cocktail kit, unknown biofilms of pathogenic clinical isolates were identified with an overall accuracy of over 80% based on the random forest algorithm. Moreover, the antibiotic-loaded cocktail nanoprobes efficiently eradicated biofilms since the nanoprobes could penetrate deep into the biofilms. This work can serve as a reliable technique for the diagnosis of biofilm infections and it can also provide instructions for the design of multiplex assays for detecting biochemical compounds beyond biofilms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
内向的清炎完成签到,获得积分20
刚刚
llll发布了新的文献求助10
2秒前
小熊完成签到,获得积分10
3秒前
3秒前
www完成签到,获得积分10
4秒前
冷先森EPC完成签到,获得积分10
4秒前
优美水彤发布了新的文献求助10
4秒前
再夕予发布了新的文献求助10
5秒前
5秒前
llll完成签到,获得积分10
8秒前
8R60d8应助cumtxzs采纳,获得10
9秒前
田様应助cumtxzs采纳,获得10
9秒前
9秒前
清秀傲之关注了科研通微信公众号
10秒前
10秒前
12秒前
能干的冷风完成签到,获得积分10
12秒前
欣喜亚男完成签到,获得积分10
14秒前
14秒前
sky完成签到,获得积分10
15秒前
DAKUMA应助lili采纳,获得10
15秒前
16秒前
共享精神应助噼里啪啦采纳,获得10
16秒前
华西发布了新的文献求助10
16秒前
17秒前
情怀应助勤恳的珊采纳,获得10
17秒前
优美水彤完成签到,获得积分10
18秒前
18秒前
freesia完成签到,获得积分20
18秒前
jenningseastera应助Hungrylunch采纳,获得10
19秒前
20秒前
YH应助陈晓迪1992采纳,获得200
21秒前
舒适薯片发布了新的文献求助10
21秒前
youyou1990发布了新的文献求助10
22秒前
youyou1990发布了新的文献求助10
22秒前
youyou1990发布了新的文献求助10
22秒前
pangpang1992完成签到 ,获得积分10
24秒前
zzzpf发布了新的文献求助10
25秒前
25秒前
25秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
《続天台宗全書・史伝1 天台大師伝注釈類》 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3842887
求助须知:如何正确求助?哪些是违规求助? 3384898
关于积分的说明 10538020
捐赠科研通 3105474
什么是DOI,文献DOI怎么找? 1710326
邀请新用户注册赠送积分活动 823598
科研通“疑难数据库(出版商)”最低求助积分说明 774149