ToxinPred2: an improved method for predicting toxicity of proteins

计算机科学 马修斯相关系数 机器学习 人工智能 相似性(几何) 数据挖掘 支持向量机 图像(数学)
作者
Neelam Sharma,Leimarembi Devi Naorem,Shipra Jain,Gajendra P. S. Raghava
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:23 (5) 被引量:285
标识
DOI:10.1093/bib/bbac174
摘要

Abstract Proteins/peptides have shown to be promising therapeutic agents for a variety of diseases. However, toxicity is one of the obstacles in protein/peptide-based therapy. The current study describes a web-based tool, ToxinPred2, developed for predicting the toxicity of proteins. This is an update of ToxinPred developed mainly for predicting toxicity of peptides and small proteins. The method has been trained, tested and evaluated on three datasets curated from the recent release of the SwissProt. To provide unbiased evaluation, we performed internal validation on 80% of the data and external validation on the remaining 20% of data. We have implemented the following techniques for predicting protein toxicity; (i) Basic Local Alignment Search Tool-based similarity, (ii) Motif-EmeRging and with Classes-Identification-based motif search and (iii) Prediction models. Similarity and motif-based techniques achieved a high probability of correct prediction with poor sensitivity/coverage, whereas models based on machine-learning techniques achieved balance sensitivity and specificity with reasonably high accuracy. Finally, we developed a hybrid method that combined all three approaches and achieved a maximum area under receiver operating characteristic curve around 0.99 with Matthews correlation coefficient 0.91 on the validation dataset. In addition, we developed models on alternate and realistic datasets. The best machine learning models have been implemented in the web server named ‘ToxinPred2’, which is available at https://webs.iiitd.edu.in/raghava/toxinpred2/ and a standalone version at https://github.com/raghavagps/toxinpred2. This is a general method developed for predicting the toxicity of proteins regardless of their source of origin.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
怡然珊珊发布了新的文献求助10
2秒前
123完成签到,获得积分10
3秒前
万能图书馆应助916采纳,获得10
4秒前
6秒前
量子星尘发布了新的文献求助10
8秒前
叶梓完成签到,获得积分10
11秒前
12秒前
默默的天玉完成签到,获得积分20
13秒前
传奇3应助沉默山灵采纳,获得30
13秒前
大傻逼完成签到,获得积分10
15秒前
15秒前
bkagyin应助Cris采纳,获得10
15秒前
16秒前
17秒前
今后应助桑榆非晚采纳,获得10
17秒前
yungu完成签到,获得积分10
18秒前
19秒前
20秒前
20秒前
anyujie完成签到 ,获得积分10
20秒前
扬帆远航应助如风随水采纳,获得10
21秒前
22秒前
22秒前
jiang完成签到 ,获得积分10
23秒前
24秒前
科研狗发布了新的文献求助10
24秒前
25秒前
孤岛发布了新的文献求助10
25秒前
27秒前
27秒前
画画完成签到,获得积分10
28秒前
28秒前
扬帆远航应助如风随水采纳,获得10
28秒前
xiaoshuwang发布了新的文献求助10
29秒前
rabwang发布了新的文献求助10
30秒前
量子星尘发布了新的文献求助10
31秒前
沉默山灵发布了新的文献求助30
31秒前
ding应助沉默的驳采纳,获得10
33秒前
李金玉发布了新的文献求助10
33秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5736632
求助须知:如何正确求助?哪些是违规求助? 5367001
关于积分的说明 15333469
捐赠科研通 4880391
什么是DOI,文献DOI怎么找? 2622848
邀请新用户注册赠送积分活动 1571730
关于科研通互助平台的介绍 1528573