Deep Covariance Alignment for Domain Adaptive Remote Sensing Image Segmentation

计算机科学 判别式 人工智能 分割 协方差 模式识别(心理学) 杠杆(统计) 联营 特征(语言学) 一般化 领域(数学分析) 机器学习 数学 哲学 数学分析 统计 语言学
作者
Linshan Wu,Ming Lu,Leyuan Fang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-11 被引量:28
标识
DOI:10.1109/tgrs.2022.3163278
摘要

Unsupervised domain adaptive (UDA) image segmentation has recently gained increasing attention, aiming to improve the generalization capability for transferring knowledge from the source domain to the target domain. However, in high spatial resolution remote sensing image (RSI), the same category from different domains (e.g., urban and rural) can appear to be totally different with extremely inconsistent distributions, which heavily limits the UDA accuracy. To address this problem, in this article, we propose a novel deep covariance alignment (DCA) model for UDA RSI segmentation. The DCA can explicitly align category features to learn shared domain-invariant discriminative feature representations, which enhance the ability of model generalization. Specifically, a category feature pooling (CFP) module is first used to extract category features by combining coarse outputs and deep features. Then, we leverage a novel covariance regularization (CR) to enforce the intracategory features to be closer and the intercategory features to be further separate. Compared with the existing category alignment methods, our CR aims to regularize the correlation between different dimensions of the features, and thus performs more robustly when dealing with divergent category features of imbalanced and inconsistent distributions. Finally, we propose a stagewise procedure to train the DCA to alleviate error accumulation. Experiments on both rural-to-urban and urban-to-rural scenarios of the LoveDA dataset demonstrate the superiority of our proposed DCA over other state-of-the-art UDA segmentation methods. Code is available at https://github.com/Luffy03/DCA .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SilverPlane发布了新的文献求助10
刚刚
胡楠发布了新的文献求助10
1秒前
碧蓝世立发布了新的文献求助10
1秒前
十月完成签到,获得积分20
1秒前
夏夜黎梦完成签到,获得积分10
1秒前
turbohero完成签到,获得积分10
3秒前
彭于晏应助懒懒采纳,获得10
3秒前
酷波er应助Triptolide采纳,获得10
3秒前
3秒前
林八八完成签到,获得积分10
3秒前
众人皆醉我独醒完成签到,获得积分10
4秒前
感冒灵完成签到,获得积分10
5秒前
可爱的函函应助ddmmyy10采纳,获得20
5秒前
5秒前
NexusExplorer应助斯文的傲珊采纳,获得10
5秒前
无花果应助我是猪采纳,获得10
5秒前
liu完成签到,获得积分10
5秒前
6秒前
佩琪完成签到,获得积分10
6秒前
咿呀完成签到,获得积分10
6秒前
7秒前
所所应助害羞彩虹采纳,获得10
7秒前
YY完成签到 ,获得积分10
7秒前
8秒前
随遇而安完成签到 ,获得积分10
9秒前
9秒前
zhanghw完成签到,获得积分10
10秒前
Future完成签到 ,获得积分10
10秒前
szl完成签到,获得积分20
10秒前
123发布了新的文献求助10
10秒前
CodeCraft应助sdas采纳,获得10
10秒前
哇哦完成签到,获得积分10
11秒前
orixero应助cjh采纳,获得10
11秒前
执着手套发布了新的文献求助10
11秒前
认真夜云完成签到,获得积分10
12秒前
12秒前
12秒前
13秒前
13秒前
13秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 1370
Secondary Ion Mass Spectrometry: Basic Concepts, Instrumental Aspects, Applications and Trends 1000
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 1000
Lidocaine regional block in the treatment of acute gouty arthritis of the foot 400
Ecological and Human Health Impacts of Contaminated Food and Environments 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
International Relations at LSE: A History of 75 Years 308
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3931564
求助须知:如何正确求助?哪些是违规求助? 3476659
关于积分的说明 10992669
捐赠科研通 3206762
什么是DOI,文献DOI怎么找? 1772233
邀请新用户注册赠送积分活动 859409
科研通“疑难数据库(出版商)”最低求助积分说明 797211