Deep learning radiomics based on contrast-enhanced ultrasound images for assisted diagnosis of pancreatic ductal adenocarcinoma and chronic pancreatitis

医学 胰腺导管腺癌 无线电技术 胰腺炎 放射科 队列 医学诊断 超声造影 活检 超声波 曲线下面积 回顾性队列研究 胰腺癌 内科学 癌症
作者
Tong Tong,Jionghui Gu,Dong Xu,Ling Song,Qiyu Zhao,Cheng Fang,Zhiqiang Yuan,Shuyuan Tian,Xin Yang,Jie Tian,Kun Wang,Tianan Jiang
出处
期刊:BMC Medicine [BioMed Central]
卷期号:20 (1) 被引量:40
标识
DOI:10.1186/s12916-022-02258-8
摘要

Accurate and non-invasive diagnosis of pancreatic ductal adenocarcinoma (PDAC) and chronic pancreatitis (CP) can avoid unnecessary puncture and surgery. This study aimed to develop a deep learning radiomics (DLR) model based on contrast-enhanced ultrasound (CEUS) images to assist radiologists in identifying PDAC and CP.Patients with PDAC or CP were retrospectively enrolled from three hospitals. Detailed clinicopathological data were collected for each patient. Diagnoses were confirmed pathologically using biopsy or surgery in all patients. We developed an end-to-end DLR model for diagnosing PDAC and CP using CEUS images. To verify the clinical application value of the DLR model, two rounds of reader studies were performed.A total of 558 patients with pancreatic lesions were enrolled and were split into the training cohort (n=351), internal validation cohort (n=109), and external validation cohorts 1 (n=50) and 2 (n=48). The DLR model achieved an area under curve (AUC) of 0.986 (95% CI 0.975-0.994), 0.978 (95% CI 0.950-0.996), 0.967 (95% CI 0.917-1.000), and 0.953 (95% CI 0.877-1.000) in the training, internal validation, and external validation cohorts 1 and 2, respectively. The sensitivity and specificity of the DLR model were higher than or comparable to the diagnoses of the five radiologists in the three validation cohorts. With the aid of the DLR model, the diagnostic sensitivity of all radiologists was further improved at the expense of a small or no decrease in specificity in the three validation cohorts.The findings of this study suggest that our DLR model can be used as an effective tool to assist radiologists in the diagnosis of PDAC and CP.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
清风完成签到,获得积分10
1秒前
1秒前
龙傲天完成签到,获得积分10
2秒前
2秒前
科研通AI5应助lee采纳,获得10
2秒前
3秒前
卷卷豆完成签到 ,获得积分10
4秒前
段段砖应助内向尔安采纳,获得10
4秒前
4秒前
4秒前
搜集达人应助元谷雪采纳,获得50
5秒前
6秒前
倪妮发布了新的文献求助10
6秒前
7秒前
7秒前
7秒前
Twilight完成签到,获得积分10
7秒前
乐乐应助lancer采纳,获得10
8秒前
gaga完成签到,获得积分10
9秒前
菠萝吹雪完成签到,获得积分10
9秒前
cxzdm发布了新的文献求助10
10秒前
Sicie完成签到,获得积分10
10秒前
10秒前
Hello应助搬砖采纳,获得10
11秒前
山大王yoyo发布了新的文献求助10
11秒前
12秒前
活泼芷文完成签到 ,获得积分10
12秒前
小蘑菇应助欢喜夏兰采纳,获得10
12秒前
ddd完成签到,获得积分10
12秒前
善学以致用应助zz采纳,获得10
12秒前
1AN完成签到 ,获得积分10
12秒前
汉堡包应助mm采纳,获得10
13秒前
13秒前
Lucas应助Anderson123采纳,获得10
13秒前
善学以致用应助Anderson123采纳,获得10
13秒前
充电宝应助Anderson123采纳,获得10
13秒前
SciGPT应助Anderson123采纳,获得10
13秒前
完美世界应助Anderson123采纳,获得10
13秒前
CipherSage应助Anderson123采纳,获得10
14秒前
爆米花应助Anderson123采纳,获得10
14秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Understanding Interaction in the Second Language Classroom Context 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3809509
求助须知:如何正确求助?哪些是违规求助? 3354044
关于积分的说明 10368403
捐赠科研通 3070309
什么是DOI,文献DOI怎么找? 1686150
邀请新用户注册赠送积分活动 810855
科研通“疑难数据库(出版商)”最低求助积分说明 766384