Molecular insight into the systematic affinity and selectivity of partner recognition sites between the WW1 and WW2 domains of human KIBRA neuroprotein

主题(音乐) 生物 结合选择性 肽序列 序列母题 选择性 结合位点 生物化学 基因 计算生物学 物理 声学 催化作用
作者
Kai Wang,Baoqiang Li,Liang Ge,Yi Xie
出处
期刊:Journal of Molecular Graphics & Modelling [Elsevier BV]
卷期号:116: 108258-108258
标识
DOI:10.1016/j.jmgm.2022.108258
摘要

Human KIBRA, a member of the WWC family proteins, is an upstream regulator of the Salvador/Warts/Hippo (SWH) signaling pathway and predominately expressed in nervous system. The protein has two functionally regulatory domains WW1 and WW2 at N-terminal region, which recognize and bind to the PY-motif segments of their partner proteins to serve as a signaling scaffold role in the SWH pathway. The two domains are highly conserved, but their downstream ligands and biological functions may not be fully consistent. In this study, we attempted to systematically profile the PY-motif affinity to and selectivity between KIBRA WW1 and WW2 domains involved in partner recognition sites. Ontology mining was used to enrich the KIBRA-interacting proteins in literature libraries, from which a variety of PY-motif peptide segments were identified, and their binding behavior to each domain was then analyzed by integrating computational modeling and experimental assay. Most PY-motif peptides were found to interact potently with WW1 and WW2, but they generally only exhibit a moderate or modest selectivity between the two domains. Subsequently, several representative peptides were further examined in detail to elucidate the molecular mechanism underlying their affinity and selectivity. It is revealed that the middle motif region of PY-motif peptides is primarily responsible for the affinity and stability of peptide binding, but only contributes marginally to peptide selectivity. Instead, the N-terminal region and, particularly, C-terminal region of PY-motif peptides play a crucial role in the selectivity. Hydrophobic contacts and hydrogen bonds confer stability and specificity to the domain-peptide interaction, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
科研通AI5应助tianshicanyi采纳,获得10
刚刚
李健应助张斯瑞采纳,获得10
1秒前
CJ发布了新的文献求助10
1秒前
称心语风发布了新的文献求助10
1秒前
ytrewq完成签到 ,获得积分10
1秒前
彭于晏应助香山叶正红采纳,获得10
2秒前
淳之风完成签到,获得积分10
3秒前
彭鑫发布了新的文献求助10
3秒前
邵邵完成签到,获得积分10
3秒前
cdh1994应助折里通采纳,获得10
4秒前
4秒前
4秒前
sswhite完成签到,获得积分10
5秒前
5秒前
jue完成签到,获得积分10
5秒前
6秒前
6秒前
6秒前
zhangkexin发布了新的文献求助10
7秒前
玲儿完成签到,获得积分10
7秒前
jue发布了新的文献求助10
7秒前
pluvia完成签到,获得积分10
8秒前
记忆里的阳光完成签到,获得积分10
8秒前
许初发布了新的文献求助10
9秒前
9秒前
wave完成签到,获得积分10
9秒前
NexusExplorer应助珍珠闹海采纳,获得10
9秒前
9秒前
叶枫完成签到,获得积分10
10秒前
lulu完成签到,获得积分10
10秒前
10秒前
11秒前
12秒前
南相完成签到,获得积分10
12秒前
小杜同学发布了新的文献求助10
12秒前
lulu发布了新的文献求助10
12秒前
ting完成签到,获得积分10
13秒前
wyq发布了新的文献求助10
13秒前
小鱼完成签到,获得积分10
14秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Treatise on Ocular Drug Delivery 200
studies in large plastic flow and fructure 200
New Syntheses with Carbon Monoxide 200
Quanterion Automated Databook NPRD-2023 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3834665
求助须知:如何正确求助?哪些是违规求助? 3377161
关于积分的说明 10496785
捐赠科研通 3096583
什么是DOI,文献DOI怎么找? 1705068
邀请新用户注册赠送积分活动 820438
科研通“疑难数据库(出版商)”最低求助积分说明 772031