清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

A proteomic atlas of atherosclerosis: regional proteomic signatures for plaque inflammation and calcification

蛋白质组学 炎症 骨桥蛋白 蛋白质组 钙化 医学 S100A8型 病理 生物信息学 生物 内科学 生物化学 基因
作者
Konstantinos Theofilatos,Stefan Stojković,Maria Hasman,Ferheen Baig,Javier Barallobre‐Barreiro,Lukas Schmidt,Siqi Yin,Xiaoke Yin,Sean A. Burnap,Bhawana Singh,Svitlana Demyanets,Stephanie Kampf,MC Nackenhorst,Johann Wojta,Manuel Mayr
出处
期刊:Cardiovascular Research [Oxford University Press]
卷期号:118 (Supplement_1) 被引量:3
标识
DOI:10.1093/cvr/cvac066.204
摘要

Abstract Funding Acknowledgements Type of funding sources: Foundation. Main funding source(s): This study was mainly supported from the British Heart Foundation (BHF) supporting Prof. Manuel Mayr as a Chair Holder (CH/16/3/32406) with BHF programme grant support (RG/16/14/32397) and Dr. Theofilatos with BHF programm grant support (G/20/10387). Background Using proteomics, we strove to reveal novel molecular subtypes of human atherosclerotic lesions, study their associations with histology and imaging and relate them to long-term cardiovascular outcomes. Methods 219 samples were obtained from 120 patients undergoing carotid endarterectomy. Sequential protein extraction was combined with multiplexed, discovery proteomics. Parallel reaction monitoring for 135 proteins was deployed for targeted validation. A combination of statistical, bioinformatics and machine learning methods was used to perform differential expression, network, pathway enrichment analysis and train and evaluate prognostic models. Results Our extensive proteomics analysis from the core and periphery of plaques doubled the coverage of the plaque proteome compared to the largest proteomics study on atherosclerosis thus far. Plaque inflammation and calcification signatures were inversely correlated and validated with targeted proteomics. The inflammation signature was enriched with neutrophil-derived proteins, including calprotectin (S100A8/9) and myeloperoxidase. The calcification signature contained fetuin-A, osteopontin, and gamma-carboxylated proteins. Sex differences in the proteome of atherosclerosis were explained by a higher proportion of calcified plaques in women. Single-cell RNA sequencing data attributed the inflammation signature predominantly to neutrophils and macrophages and the calcification signature to smooth muscle cells, except for certain plasma proteins that were not expressed but retained in the plaque, i.e., fetuin-A. Echogenic lesions reflect the collagen content and calcification of plaque but carotid Duplex ultrasound fails to capture the extent of inflammatory protein changes in symptomatic plaques. Applying dimensionality reduction and machine learning on the proteomics data defined 4 distinct plaque phenotypes and revealed key protein signatures linked to smooth muscle cell content, plaque calcification and structural extracellular matrix, which improved the 9-year prognostic AUC by 25% compared to ultrasound and histology. A biosignature of four proteins (CNN1, PROC, SERPH, and CSPG2) independently predicted the progression of atherosclerosis and cardiovascular mortality with an AUC of 75% Conclusion We combined discovery and targeted proteomics with network reconstruction and clustering techniques to provide molecular insights into protein changes in atherosclerotic plaques. The application of proteomics and machine learning techniques revealed distinct clusters of plaques that inform on disease progression and future adverse cardiovascular events.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
8秒前
DE2022完成签到,获得积分10
10秒前
doctorbin完成签到 ,获得积分10
13秒前
biocreater完成签到,获得积分10
14秒前
su完成签到 ,获得积分10
18秒前
HUO完成签到 ,获得积分10
18秒前
偏偏完成签到,获得积分20
21秒前
顾矜应助焊接采纳,获得10
24秒前
大模型应助Min采纳,获得20
25秒前
丘比特应助lienne采纳,获得10
28秒前
28秒前
Xieyusen发布了新的文献求助10
34秒前
tmobiusx完成签到,获得积分10
36秒前
36秒前
38秒前
周小鱼发布了新的文献求助10
42秒前
韩医生口腔完成签到 ,获得积分10
44秒前
NexusExplorer应助科研通管家采纳,获得10
44秒前
cdercder应助科研通管家采纳,获得10
44秒前
芝士大王完成签到 ,获得积分10
48秒前
49秒前
冰洁儿完成签到,获得积分10
51秒前
lienne发布了新的文献求助10
54秒前
54秒前
水星完成签到 ,获得积分10
56秒前
sysi完成签到 ,获得积分10
59秒前
肖果完成签到 ,获得积分10
1分钟前
Wangyingjie5发布了新的文献求助30
1分钟前
1分钟前
顺利的曼寒完成签到 ,获得积分10
1分钟前
lienne完成签到,获得积分10
1分钟前
Xieyusen发布了新的文献求助10
1分钟前
1分钟前
小静完成签到 ,获得积分10
1分钟前
1分钟前
ESC惠子子子子子完成签到 ,获得积分10
1分钟前
水母大王发布了新的文献求助10
1分钟前
Wangyingjie5完成签到,获得积分10
1分钟前
谢陈完成签到 ,获得积分10
1分钟前
Lucas应助苏木采纳,获得10
1分钟前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
Interpretability and Explainability in AI Using Python 200
SPECIAL FEATURES OF THE EXCHANGE INTERACTIONS IN ORTHOFERRITE-ORTHOCHROMITES 200
Null Objects from a Cross-Linguistic and Developmental Perspective 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3833895
求助须知:如何正确求助?哪些是违规求助? 3376330
关于积分的说明 10492632
捐赠科研通 3095861
什么是DOI,文献DOI怎么找? 1704730
邀请新用户注册赠送积分活动 820104
科研通“疑难数据库(出版商)”最低求助积分说明 771859