Artificial Intelligence Improves Radiologist Performance for Predicting Malignancy at Chest CT

医学 梅德林 肺癌 肺癌筛查 恶性肿瘤 随机对照试验 放射科 医学物理学 内科学 政治学 法学
作者
Masahiro Yanagawa
出处
期刊:Radiology [Radiological Society of North America]
卷期号:304 (3): 692-693 被引量:1
标识
DOI:10.1148/radiol.220571
摘要

HomeRadiologyVol. 304, No. 3 PreviousNext Reviews and CommentaryEditorialArtificial Intelligence Improves Radiologist Performance for Predicting Malignancy at Chest CTMasahiro Yanagawa Masahiro Yanagawa Author AffiliationsFrom the Department of Radiology, Osaka University Graduate School of Medicine, Yamadaoka, 2-2 Suita, Osaka 565-0871, Japan.Address correspondence to the author (email: [email protected]).Masahiro Yanagawa Published Online:May 24 2022https://doi.org/10.1148/radiol.220571MoreSectionsFull textPDF ToolsImage ViewerAdd to favoritesCiteTrack CitationsPermissionsReprints ShareShare onFacebookTwitterLinked In References1. National Lung Screening Trial Research TeamAberle DR, Adams AM; et al. Reduced lung-cancer mortality with low-dose computed tomographic screening. N Engl J Med 2011;365(5):395–409. Crossref, Medline, Google Scholar2. de Koning HJ, van der Aalst CM, de Jong PA, et al. Reduced Lung-Cancer Mortality with Volume CT Screening in a Randomized Trial. N Engl J Med 2020;382(6):503–513. Crossref, Medline, Google Scholar3. Ost DE, Gould MK . Decision making in patients with pulmonary nodules. Am J Respir Crit Care Med 2012;185(4):363–372. Crossref, Medline, Google Scholar4. Gould MK, Donington J, Lynch WR, et al. Evaluation of individuals with pulmonary nodules: when is it lung cancer? Diagnosis and management of lung cancer, 3rd ed: American College of Chest Physicians evidence-based clinical practice guidelines. Chest 2013;143(5 Suppl):e93S–e120S. Crossref, Medline, Google Scholar5. Chelala L, Hossain R, Kazerooni EA, Christensen JD, Dyer DS, White CS . Lung-RADS Version 1.1: Challenges and a Look Ahead, From the AJR Special Series on Radiology Reporting and Data Systems. AJR Am J Roentgenol 2021;216(6):1411–1422. Crossref, Medline, Google Scholar6. van Riel SJ, Jacobs C, Scholten ET, et al. Observer variability for Lung-RADS categorisation of lung cancer screening CTs: impact on patient management. Eur Radiol 2019;29(2):924–931. Crossref, Medline, Google Scholar7. Ohno Y, Aoyagi K, Yaguchi A, et al. Differentiation of Benign from Malignant Pulmonary Nodules by Using a Convolutional Neural Network to Determine Volume Change at Chest CT. Radiology 2020;296(2):432–443. Link, Google Scholar8. Dotson TL, Filippini C, Arteta C, Declerck J, Kadir T, Pickup LC, et al. AI-Based Computer-Aided Diagnosis (CADx) Improves Stratification Decisions on Indeterminate Pulmonary Nodules: An MRMC Reader Study. Am J Respir Crit Care Med 2020;201:A7691. Google Scholar9. Kim RY, Oke JL, Pickup LC, et al. Artificial Intelligence Tool for Assessment of Indeterminate Pulmonary Nodules Detected with CT. Radiology 2022;304(3):683–691. Link, Google Scholar10. Ardila D, Kiraly AP, Bharadwaj S, et al. End-to-end lung cancer screening with three-dimensional deep learning on low-dose chest computed tomography. Nat Med 2019;25(6):954–961 [Published correction appears in Nat Med 2019;25(8):1319.]. Crossref, Medline, Google ScholarArticle HistoryReceived: Mar 10 2022Revision requested: Mar 18 2022Revision received: Mar 19 2022Accepted: Mar 24 2022Published online: May 24 2022Published in print: Sept 2022 FiguresReferencesRelatedDetailsAccompanying This ArticleArtificial Intelligence Tool for Assessment of Indeterminate Pulmonary Nodules Detected with CTMay 24 2022RadiologyRecommended Articles Artificial Intelligence Tool for Assessment of Indeterminate Pulmonary Nodules Detected with CTRadiology2022Volume: 304Issue: 3pp. 683-691Doing Too Much or Not Enough: Striking a BalanceRadiology2021Volume: 300Issue: 1pp. 207-208Low-Dose CT Screening for Lung Cancer: Evidence from 2 Decades of StudyRadiology: Imaging Cancer2020Volume: 2Issue: 2Assessing Pulmonary Nodules by Using Lower Dose at CTRadiology2020Volume: 297Issue: 3pp. 708-709CT Diagnosis of Lung Adenocarcinoma: Radiologic-Pathologic Correlation and Growth RateRadiology2020Volume: 297Issue: 1pp. 199-200See More RSNA Education Exhibits Management of Solitary Pulmonary Nodules: Pushing the Limits Beyond the GuidelinesDigital Posters2019Introduction to Artificial Intelligence and Big Data Research in Chest RadiologyDigital Posters2019Evaluation and Management of Subsolid Nodules (SSNs): From Lung Cancer Screening to Everyday Clinical PracticeDigital Posters2018 RSNA Case Collection Thoracic splenosisRSNA Case Collection2020Granulomatous lymphocytic interstitial lung disease RSNA Case Collection2021Lipoid PneumoniaRSNA Case Collection2021 Vol. 304, No. 3 Metrics Altmetric Score PDF download
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
个性的振家完成签到,获得积分10
1秒前
Ywffffff完成签到 ,获得积分10
1秒前
科研通AI5应助zzzzz采纳,获得10
2秒前
文静的灵松完成签到,获得积分10
7秒前
健康的青槐完成签到 ,获得积分10
8秒前
里德完成签到 ,获得积分10
8秒前
9秒前
布拉德皮特厚完成签到,获得积分10
11秒前
Hello应助YUE采纳,获得10
13秒前
orixero应助和花花采纳,获得10
16秒前
17秒前
19秒前
萧然完成签到,获得积分10
20秒前
21秒前
萧然发布了新的文献求助10
22秒前
ning完成签到,获得积分10
23秒前
25秒前
王照盼完成签到 ,获得积分10
25秒前
今后应助耍酷以柳采纳,获得10
25秒前
26秒前
科研通AI2S应助山间风采纳,获得10
27秒前
ZD完成签到 ,获得积分10
28秒前
30秒前
32秒前
zzzzz发布了新的文献求助10
33秒前
小帅完成签到,获得积分10
34秒前
和花花发布了新的文献求助10
35秒前
对对碰完成签到,获得积分10
35秒前
Lmmcer发布了新的文献求助10
35秒前
Milo发布了新的文献求助10
36秒前
科研通AI5应助乱武采纳,获得10
36秒前
猪猪hero发布了新的文献求助10
36秒前
37秒前
01231009yrjz完成签到,获得积分10
38秒前
丘比特应助平淡安阳采纳,获得10
39秒前
40秒前
Richard完成签到,获得积分10
42秒前
HAHA完成签到,获得积分10
43秒前
xiaoxiong发布了新的文献求助10
44秒前
蓝风铃完成签到 ,获得积分10
45秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
引进保护装置的分析评价八七年国外进口线路等保护运行情况介绍 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3841914
求助须知:如何正确求助?哪些是违规求助? 3383975
关于积分的说明 10532095
捐赠科研通 3104184
什么是DOI,文献DOI怎么找? 1709543
邀请新用户注册赠送积分活动 823313
科研通“疑难数据库(出版商)”最低求助积分说明 773878