[Heart rate extraction algorithm based on adaptive heart rate search model].

光容积图 心率 算法 计算机科学 心率监护仪 相关系数 加速度计 人工智能 可穿戴技术 皮尔逊积矩相关系数 可穿戴计算机 语音识别 数学 机器学习 统计 血压 医学 无线 电信 内科学 嵌入式系统 操作系统
作者
Ronghao Meng,Zhuoshi Li,Helong Yu,Qichao Niu
出处
期刊:PubMed 卷期号:39 (3): 516-526
标识
DOI:10.7507/1001-5515.202101091
摘要

Photoplethysmography (PPG) is a non-invasive technique to measure heart rate at a lower cost, and it has been recently widely used in smart wearable devices. However, as PPG is easily affected by noises under high-intensity movement, the measured heart rate in sports has low precision. To tackle the problem, this paper proposed a heart rate extraction algorithm based on self-adaptive heart rate separation model. The algorithm firstly preprocessed acceleration and PPG signals, from which cadence and heart rate history were extracted respectively. A self-adaptive model was made based on the connection between the extracted information and current heart rate, and to output possible domain of the heart rate accordingly. The algorithm proposed in this article removed the interference from strong noises by narrowing the domain of real heart rate. From experimental results on the PPG dataset used in 2015 IEEE Signal Processing Cup, the average absolute error on 12 training sets was 1.12 beat per minute (bpm) (Pearson correlation coefficient: 0.996; consistency error: -0.184 bpm). The average absolute error on 10 testing sets was 3.19 bpm (Pearson correlation coefficient: 0.990; consistency error: 1.327 bpm). From experimental results, the algorithm proposed in this paper can effectively extract heart rate information under noises and has the potential to be put in usage in smart wearable devices.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研一霸完成签到 ,获得积分10
3秒前
量子星尘发布了新的文献求助10
3秒前
威利大威利完成签到,获得积分20
4秒前
滋滋发布了新的文献求助10
5秒前
泡泡完成签到,获得积分10
5秒前
5秒前
临子完成签到,获得积分10
6秒前
笨笨完成签到,获得积分10
7秒前
9秒前
搜集达人应助泡泡采纳,获得10
9秒前
慕青应助黑马采纳,获得10
10秒前
10秒前
11秒前
Lawrence发布了新的文献求助10
12秒前
AAAADiao发布了新的文献求助10
13秒前
眯眯眼的龙猫完成签到,获得积分10
14秒前
lanyiyi完成签到,获得积分10
15秒前
cookie完成签到,获得积分10
15秒前
英姑应助majun采纳,获得10
15秒前
zhhong发布了新的文献求助10
15秒前
天天快乐应助梅残风暖采纳,获得10
16秒前
顾矜应助123456采纳,获得10
17秒前
17秒前
17秒前
隐形饼干完成签到 ,获得积分10
18秒前
19秒前
19秒前
20秒前
20秒前
21秒前
21秒前
张昀倩完成签到,获得积分10
22秒前
23秒前
Jasper应助滋滋采纳,获得10
23秒前
23秒前
高大以南发布了新的文献求助10
23秒前
23秒前
23秒前
23秒前
小李发布了新的文献求助10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5536205
求助须知:如何正确求助?哪些是违规求助? 4623940
关于积分的说明 14590018
捐赠科研通 4564400
什么是DOI,文献DOI怎么找? 2501719
邀请新用户注册赠送积分活动 1480512
关于科研通互助平台的介绍 1451794