A Hybrid Causal Structure Learning Algorithm for Mixed-Type Data

可识别性 条件独立性 计算机科学 因果模型 因果结构 成对比较 有向无环图 机器学习 数据类型 修剪 合成数据 人工智能 算法 理论计算机科学 数学 统计 物理 量子力学 农学 生物 程序设计语言
作者
Yan Li,Rui Xia,Chunchen Liu,Liang Sun
出处
期刊:Proceedings of the ... AAAI Conference on Artificial Intelligence [Association for the Advancement of Artificial Intelligence (AAAI)]
卷期号:36 (7): 7435-7443 被引量:3
标识
DOI:10.1609/aaai.v36i7.20707
摘要

Inferring the causal structure of a set of random variables is a crucial problem in many disciplines of science. Over the past two decades, various approaches have been pro- posed for causal discovery from observational data. How- ever, most of the existing methods are designed for either purely discrete or continuous data, which limit their practical usage. In this paper, we target the problem of causal structure learning from observational mixed-type data. Although there are a few methods that are able to handle mixed-type data, they suffer from restrictions, such as linear assumption and poor scalability. To overcome these weaknesses, we formulate the causal mechanisms via mixed structure equation model and prove its identifiability under mild conditions. A novel locally consistent score, named CVMIC, is proposed for causal directed acyclic graph (DAG) structure learning. Moreover, we propose an efficient conditional independence test, named MRCIT, for mixed-type data, which is used in causal skeleton learning and final pruning to further improve the computational efficiency and precision of our model. Experimental results on both synthetic and real-world data demonstrate that our proposed hybrid model outperforms the other state-of-the-art methods. Our source code is available at https://github.com/DAMO-DI-ML/AAAI2022-HCM.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
慕青应助hysmoment采纳,获得10
1秒前
dududu发布了新的文献求助10
1秒前
田育完成签到,获得积分10
4秒前
5秒前
金熙美发布了新的文献求助10
6秒前
学术趴菜完成签到,获得积分10
6秒前
山城小丸完成签到,获得积分10
8秒前
8秒前
Qumy应助金熙美采纳,获得10
12秒前
13秒前
14秒前
高高烙完成签到,获得积分10
16秒前
FashionBoy应助123采纳,获得10
16秒前
17秒前
18秒前
烟花应助CYY采纳,获得10
19秒前
小高同学发布了新的文献求助10
20秒前
21秒前
李天完成签到,获得积分10
22秒前
22秒前
兴奋的万声完成签到,获得积分10
23秒前
可耐的梦琪完成签到,获得积分10
36秒前
果粒橙完成签到 ,获得积分10
37秒前
亦雪发布了新的文献求助20
39秒前
n3pu030036应助小周碎碎念采纳,获得10
40秒前
42秒前
42秒前
彭于晏应助小高同学采纳,获得10
42秒前
充电宝应助科研通管家采纳,获得10
43秒前
科目三应助科研通管家采纳,获得10
43秒前
搜集达人应助liiiii采纳,获得10
43秒前
情怀应助科研通管家采纳,获得10
43秒前
科研通AI5应助科研通管家采纳,获得10
43秒前
43秒前
李爱国应助科研通管家采纳,获得10
43秒前
Xenia应助科研通管家采纳,获得10
43秒前
SciGPT应助科研通管家采纳,获得10
43秒前
汉堡包应助科研通管家采纳,获得10
43秒前
深情安青应助科研通管家采纳,获得30
43秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778363
求助须知:如何正确求助?哪些是违规求助? 3323989
关于积分的说明 10216917
捐赠科研通 3039279
什么是DOI,文献DOI怎么找? 1667934
邀请新用户注册赠送积分活动 798438
科研通“疑难数据库(出版商)”最低求助积分说明 758385