An interpretable deep learning workflow for discovering subvisual abnormalities in CT scans of COVID-19 inpatients and survivors

2019年冠状病毒病(COVID-19) 无线电技术 医学 薄壁组织 放射科 严重急性呼吸综合征冠状病毒2型(SARS-CoV-2) 人工智能 计算机断层摄影术 2019-20冠状病毒爆发 深度学习 计算机科学 病理 内科学 疾病 爆发 传染病(医学专业)
作者
Longxi Zhou,Xianglin Meng,Yuxin Huang,Kai Kang,Juexiao Zhou,Yuetan Chu,Haoyang Li,Xie De-xuan,Jiannan Zhang,Weizhen Yang,Na Bai,Yi Zhao,Mingyan Zhao,Guohua Wang,Lawrence Carin,Xigang Xiao,Kaijiang Yu,Zhaowen Qiu,Xin Gao
出处
期刊:Nature Machine Intelligence [Nature Portfolio]
卷期号:4 (5): 494-503 被引量:26
标识
DOI:10.1038/s42256-022-00483-7
摘要

Abstract Tremendous efforts have been made to improve diagnosis and treatment of COVID-19, but knowledge on long-term complications is limited. In particular, a large portion of survivors has respiratory complications, but currently, experienced radiologists and state-of-the-art artificial intelligence systems are not able to detect many abnormalities from follow-up computerized tomography (CT) scans of COVID-19 survivors. Here we propose Deep-LungParenchyma-Enhancing (DLPE), a computer-aided detection (CAD) method for detecting and quantifying pulmonary parenchyma lesions on chest CT. Through proposing a number of deep-learning-based segmentation models and assembling them in an interpretable manner, DLPE removes irrelevant tissues from the perspective of pulmonary parenchyma, and calculates the scan-level optimal window, which considerably enhances parenchyma lesions relative to the lung window. Aided by DLPE, radiologists discovered novel and interpretable lesions from COVID-19 inpatients and survivors, which were previously invisible under the lung window. Based on DLPE, we removed the scan-level bias of CT scans, and then extracted precise radiomics from such novel lesions. We further demonstrated that these radiomics have strong predictive power for key COVID-19 clinical metrics on an inpatient cohort of 1,193 CT scans and for sequelae on a survivor cohort of 219 CT scans. Our work sheds light on the development of interpretable medical artificial intelligence and showcases how artificial intelligence can discover medical findings that are beyond sight.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Orange应助hjy采纳,获得10
刚刚
高高的无颜关注了科研通微信公众号
刚刚
科研通AI5应助Rabbit采纳,获得50
刚刚
大模型应助冰封火种采纳,获得10
2秒前
2秒前
科目三应助propofol采纳,获得10
5秒前
sx发布了新的文献求助10
6秒前
6秒前
6秒前
林梓峰完成签到,获得积分10
7秒前
mix完成签到 ,获得积分10
7秒前
7秒前
xz发布了新的文献求助10
7秒前
BL发布了新的文献求助10
7秒前
8秒前
停停走走发布了新的文献求助20
8秒前
Boa完成签到,获得积分10
8秒前
小李完成签到,获得积分20
9秒前
9秒前
小二郎应助小欣采纳,获得10
9秒前
科研通AI6应助阳光青文采纳,获得10
9秒前
今何在完成签到,获得积分20
10秒前
11秒前
12秒前
13秒前
dydydyd完成签到,获得积分10
13秒前
认真搬砖的蜡笔小新给认真搬砖的蜡笔小新的求助进行了留言
13秒前
14秒前
xiaojinzi发布了新的文献求助10
14秒前
666完成签到,获得积分10
14秒前
程远山发布了新的文献求助30
15秒前
15秒前
16秒前
18秒前
CodeCraft应助停停走走采纳,获得10
18秒前
enli完成签到,获得积分10
18秒前
19秒前
19秒前
kengsibufuze完成签到,获得积分10
19秒前
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
Reflections of female probation practitioners: navigating the challenges of working with male offenders 500
Probation staff reflective practice: can it impact on outcomes for clients with personality difficulties? 500
PRINCIPLES OF BEHAVIORAL ECONOMICS Microeconomics & Human Behavior 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5028605
求助须知:如何正确求助?哪些是违规求助? 4264449
关于积分的说明 13293731
捐赠科研通 4072538
什么是DOI,文献DOI怎么找? 2227489
邀请新用户注册赠送积分活动 1235971
关于科研通互助平台的介绍 1160275