Efficient Multi-view K-means Clustering with Multiple Anchor Graphs

聚类分析 计算机科学 聚类系数 数据挖掘 图形 理论计算机科学 人工智能
作者
Ben Yang,Xuetao Zhang,Zhongheng Li,Feiping Nie,Fei Wang
出处
期刊:IEEE Transactions on Knowledge and Data Engineering [Institute of Electrical and Electronics Engineers]
卷期号:: 1-12 被引量:27
标识
DOI:10.1109/tkde.2022.3185683
摘要

Multi-view clustering has attracted a lot of attention due to its ability to integrate information from distinct views, but how to improve efficiency is still a hot research topic. Anchor graph-based methods and k-means-based methods are two current popular efficient methods, however, both have limitations. Clustering on the derived anchor graph takes a while for anchor graph-based methods, and the efficiency of k-means-based methods drops significantly when the data dimension is large. To emphasize these issues, we developed an efficient multi-view k-means clustering method with multiple anchor graphs (EMKMC). It first constructs anchor graphs for each view and then integrates these anchor graphs using an improved k-means strategy to obtain sample categories without any extra post-processing. Since EMKMC combines the high-efficiency portions of anchor graph-based methods and k-means-based methods, its efficiency is substantially higher than current fast methods, especially when dealing with large-scale high-dimensional multi-view data. Extensive experiments demonstrate that, compared to other state-of-the-art methods, EMKMC can boost clustering efficiency by several to thousands of times while maintaining comparable or even exceeding clustering effectiveness.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
FashionBoy应助言多必失采纳,获得10
1秒前
irenelijiaaa发布了新的文献求助10
1秒前
Morii完成签到 ,获得积分10
1秒前
1秒前
2秒前
BLY完成签到,获得积分20
3秒前
3秒前
王小明发布了新的文献求助10
5秒前
Lucas应助可爱冰绿采纳,获得10
5秒前
cjx发布了新的文献求助10
6秒前
AteeqBaloch完成签到,获得积分10
6秒前
6秒前
艺阳发布了新的文献求助10
7秒前
量子星尘发布了新的文献求助10
7秒前
Jacky应助JiaY采纳,获得10
7秒前
8秒前
8秒前
9秒前
9秒前
576-576完成签到 ,获得积分10
9秒前
10秒前
10秒前
Kelly发布了新的文献求助10
12秒前
研友_VZG7GZ应助甜甜醉香采纳,获得10
12秒前
13秒前
情怀应助子子子子瞻采纳,获得10
13秒前
13秒前
柒柒完成签到,获得积分10
13秒前
Camellia发布了新的文献求助10
13秒前
Faust发布了新的文献求助10
14秒前
孤巷的猫发布了新的文献求助10
15秒前
TheSail完成签到,获得积分10
15秒前
王志鹏完成签到 ,获得积分10
15秒前
TRY发布了新的文献求助10
15秒前
林lin发布了新的文献求助10
16秒前
猪哥完成签到,获得积分10
16秒前
陈鹿华完成签到 ,获得积分10
16秒前
seon发布了新的文献求助10
16秒前
从容的蓉发布了新的文献求助30
16秒前
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5474151
求助须知:如何正确求助?哪些是违规求助? 4575997
关于积分的说明 14356041
捐赠科研通 4503822
什么是DOI,文献DOI怎么找? 2467785
邀请新用户注册赠送积分活动 1455585
关于科研通互助平台的介绍 1429599