亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Extraction of Micro-Doppler Feature Using LMD Algorithm Combined Supplement Feature for UAVs and Birds Classification

光谱图 计算机科学 雷达 人工智能 特征提取 特征(语言学) 模式识别(心理学) 计算机视觉 干扰(通信) 电信 语言学 频道(广播) 哲学
作者
Ting Dai,Shiyou Xu,Biao Tian,Jun Hu,Yue Zhang,Zengping Chen
出处
期刊:Remote Sensing [MDPI AG]
卷期号:14 (9): 2196-2196 被引量:14
标识
DOI:10.3390/rs14092196
摘要

In the past few decades, the demand for reliable and robust systems capable of monitoring unmanned aerial vehicles (UAVs) increased significantly due to the security threats from its wide applications. During UAVs surveillance, birds are a typical confuser target. Therefore, discriminating UAVs from birds is critical for successful non-cooperative UAVs surveillance. Micro-Doppler signature (m-DS) reflects the scattering characteristics of micro-motion targets and has been utilized for many radar automatic target recognition (RATR) tasks. In this paper, the authors deploy local mean decomposition (LMD) to separate the m-DS of the micro-motion parts from the body returns of the UAVs and birds. After the separation, rotating parts will be obtained without the interference of the body components, and the m-DS features can also be revealed more clearly, which is conducive to feature extraction. What is more, there are some problems in using m-DS only for target classification. Firstly, extracting only m-DS features makes incomplete use of information in the spectrogram. Secondly, m-DS can be observed only for metal rotor UAVs, or large UAVs when they are closer to the radar. Lastly, m-DS cannot be observed when the size of the birds is small, or when it is gliding. The authors thus propose an algorithm for RATR of UAVs and interfering targets under a new system of L band staring radar. In this algorithm, to make full use of the information in the spectrogram and supplement the information in exceptional situations, m-DS, movement, and energy aggregation features of the target are extracted from the spectrogram. On the benchmark dataset, the proposed algorithm demonstrates a better performance than the state-of-the-art algorithms. More specifically, the equal error rate (EER) proposed is 2.56% lower than the existing methods, which demonstrates the effectiveness of the proposed algorithm.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
6秒前
呵呵发布了新的文献求助10
6秒前
8秒前
FOREST发布了新的文献求助10
11秒前
王润萌发布了新的文献求助10
11秒前
jing完成签到,获得积分10
11秒前
Akim应助eryu25采纳,获得10
12秒前
健忘浩宇发布了新的文献求助10
13秒前
嘚嘚完成签到,获得积分10
15秒前
vetzlk完成签到 ,获得积分10
18秒前
你从来不乖完成签到,获得积分20
19秒前
realrrr完成签到 ,获得积分10
19秒前
21秒前
21秒前
健忘浩宇完成签到,获得积分10
23秒前
QianYang发布了新的文献求助10
26秒前
xionggege完成签到,获得积分10
27秒前
Mic应助科研通管家采纳,获得10
27秒前
爆米花应助科研通管家采纳,获得10
27秒前
Mic应助科研通管家采纳,获得10
27秒前
ding应助科研通管家采纳,获得10
27秒前
Mic应助科研通管家采纳,获得10
27秒前
27秒前
在水一方应助科研通管家采纳,获得10
27秒前
Lucas应助科研通管家采纳,获得10
27秒前
彭于晏完成签到,获得积分0
32秒前
shuhaha完成签到,获得积分10
36秒前
山梦完成签到 ,获得积分10
36秒前
涂涂完成签到 ,获得积分10
37秒前
38秒前
养乐多敬你完成签到 ,获得积分10
41秒前
科研通AI2S应助FOREST采纳,获得10
41秒前
深情安青应助frances采纳,获得10
42秒前
42秒前
eryu25发布了新的文献求助10
42秒前
李大刚完成签到 ,获得积分10
54秒前
pinklay完成签到 ,获得积分10
55秒前
YAO完成签到 ,获得积分10
55秒前
绿柏完成签到,获得积分10
57秒前
nina完成签到 ,获得积分10
57秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Signals, Systems, and Signal Processing 400
4th edition, Qualitative Data Analysis with NVivo Jenine Beekhuyzen, Pat Bazeley 300
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5611827
求助须知:如何正确求助?哪些是违规求助? 4695978
关于积分的说明 14890100
捐赠科研通 4727293
什么是DOI,文献DOI怎么找? 2545926
邀请新用户注册赠送积分活动 1510337
关于科研通互助平台的介绍 1473236