Discrimination of lipoma from atypical lipomatous tumor/well-differentiated liposarcoma using magnetic resonance imaging radiomics combined with machine learning

磁共振成像 无线电技术 医学 脂肪瘤 放射科 脂肪肉瘤 金标准(测试) 活检 核医学
作者
Nurdan Cay,Bokebatur Ahmet Rasit Mendi,Halitcan Batur,Fazli Erdogan
出处
期刊:Japanese Journal of Radiology [Springer Science+Business Media]
标识
DOI:10.1007/s11604-022-01278-x
摘要

PurposeTo evaluate the diagnostic capability of radiomics in distinguishing lipoma and Atypic Lipomatous Tumors/Well-Differentiated Liposarcomas (ALT/WDL) with Magnetic Resonance Imaging (MRI).Materials and methodsPatients with a histopathologic diagnosis of lipoma (n = 45) and ALT/WDL (n = 20), who had undergone pre-surgery or pre-biopsy MRI, were enrolled. The MDM2 amplification was accepted as gold-standard test. The T1-weighted turbo spin echo images were used for radiomics analysis. Utility of a predefined standardized imaging protocol and a single type of 1.5 T scanner were sought as inclusion criteria. Radiomics parameters that show a certain level of reproducibility were included in the study and supplied to Support Vector Machine (SVM) as a machine learning method.ResultsNo significant difference was found in terms of gender, location and age between the lipoma and ALT/WDL groups. Sixty-five parameters were accepted as reproducible. Fifty-seven parameters were able to distinguish the two groups significantly (AUC range 0.564–0.902). Diagnostic performance of the SVM was one of the highest among literature findings: sensitivity = 96.8% (95% CI 94.03–98.39%), specificity = 93.72% (95% CI 86.36–97.73%) and AUC = 0.987 (95% CI 0.972–0.999).ConclusionAlthough radiomics has been proven to be useful in previous literature regarding discrimination of lipomas and ALT/WDLs, we found that its accuracy could further be improved with utility of standardized hardware, imaging protocols and incorporation of machine learning methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Anei发布了新的文献求助10
1秒前
1秒前
snowy完成签到,获得积分10
1秒前
5秒前
255完成签到,获得积分10
5秒前
Luojiayi发布了新的文献求助10
7秒前
angellas完成签到,获得积分10
7秒前
8秒前
8秒前
lang完成签到,获得积分10
9秒前
科研通AI5应助魏伯安采纳,获得10
10秒前
CipherSage应助fanfan采纳,获得10
12秒前
CodeCraft应助王琴采纳,获得10
12秒前
清爽的觅儿完成签到,获得积分10
12秒前
星纪发布了新的文献求助10
12秒前
13秒前
与我常在发布了新的文献求助10
14秒前
科研通AI5应助www采纳,获得30
15秒前
魏伯安发布了新的文献求助10
19秒前
SciGPT应助是真的不吃鱼采纳,获得10
21秒前
21秒前
妍宝贝发布了新的文献求助80
21秒前
嘎嘎发布了新的文献求助10
22秒前
BBB完成签到,获得积分10
23秒前
24秒前
24秒前
Costing完成签到,获得积分10
25秒前
26秒前
王琴发布了新的文献求助10
26秒前
傅以柳完成签到,获得积分10
26秒前
27秒前
深情安青应助hahhhah采纳,获得10
27秒前
30秒前
嘻嘻完成签到,获得积分10
30秒前
沉默是金发布了新的文献求助10
30秒前
30秒前
一条摆摆的沙丁鱼完成签到 ,获得积分10
30秒前
31秒前
31秒前
Rita发布了新的文献求助10
32秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2500
줄기세포 생물학 1000
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
2025-2031全球及中国蛋黄lgY抗体行业研究及十五五规划分析报告(2025-2031 Global and China Chicken lgY Antibody Industry Research and 15th Five Year Plan Analysis Report) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4479336
求助须知:如何正确求助?哪些是违规求助? 3936825
关于积分的说明 12213102
捐赠科研通 3591524
什么是DOI,文献DOI怎么找? 1975029
邀请新用户注册赠送积分活动 1012172
科研通“疑难数据库(出版商)”最低求助积分说明 905551